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Abstract 

The cellular cytoskeleton relies on diverse populations of motors, filaments, and binding proteins acting in 

concert to enable non-equilibrium processes ranging from mitosis to chemotaxis. The cytoskeleton’s 

versatile reconfigurability, programmed by interactions between its constituents, make it a foundational 

active matter platform. However, current active matter endeavors are limited largely to single force-

generating components acting on a single substrate–far from the composite cytoskeleton in cells. Here, we 

engineer actin-microtubule composites, driven by kinesin and myosin motors and tuned by crosslinkers, to 

ballistically restructure and flow with speeds that span three orders of magnitude depending on the 

composite formulation and time relative to the onset of motor activity. Differential dynamic microscopy 

analyses reveal that kinesin and myosin compete to delay the onset of acceleration and suppress discrete 

restructuring events, while passive crosslinking of either actin or microtubules has an opposite effect. Our 

minimal advection-diffusion model and spatial correlation analyses correlate these dynamics to structure, 

with motor antagonism suppressing reconfiguration and de-mixing, while crosslinking enhances clustering. 

Despite the rich formulation space and emergent formulation-dependent structures, the non-equilibrium 

dynamics across all composites and timescales can be organized into three classes–slow isotropic 

reorientation, fast directional flow, and multimode restructuring. Moreover, our mathematical model 

demonstrates that diverse structural motifs can arise simply from the interplay between motor-driven 

advection and frictional drag. These general features of our platform facilitate applicability to other active 

matter systems, and shed light on diverse ways that cytoskeletal components can cooperate or compete to 

enable wide-ranging cellular processes. 

Keywords: cytoskeleton, active matter, composite, myosin, kinesin, actin, microtubules, differential 

dynamic microscopy, fluorescence microscopy 

 

Significance 

The cell cytoskeleton is a composite of protein filaments and crosslinkers pushed out-of-equilibrium by 

molecular motors to mediate wide-ranging processes from migration to morphogenesis. The cytoskeleton 

is, thus, paradigmatic active matter and its composite nature is one of its hallmarks. Yet, state-of-the-art 

active matter focuses on single force-generating components and substrates. Here, we engineer cytoskeleton 

composites driven by dual motors to contract, flow, and restructure into diverse morphologies from 

interpenetrating scaffolds to phase-separated clusters. Competition between the activities of the two motors 

delays restructuring and suppresses de-mixing, while filament crosslinking has an opposite effect. Our bio-

inspired active composites, bringing reconstituted systems closer to mimicking cytoskeletal complexity, 

are foundational for diverse materials applications from wound-healing to soft-robotics. 
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Introduction 

The cytoskeleton is a dynamic, non-equilibrium material comprising protein filaments, including actin, 

microtubules and intermediate filaments, as well as motor proteins, such as myosins and kinesins, that 

actively push and pull on the protein filaments (1–8). Crosslinking proteins also connect and bundle 

filaments as needed for cellular processes (9–12). This complex composite continuously restructures and 

reconfigures in response to demands of the cell, to enable diverse processes from cytokinesis to mechano-

sensing (3–5,7,8,13–21). In vitro systems of reconstituted cytoskeletal proteins, which display rich and 

tunable dynamics, are also intensely studied as model active matter platforms to shed light on the non-

equilibrium physics underlying force-generating, reconfigurable systems (7,12,19,22–40). 

Interacting networks of semiflexible actin filaments and rigid microtubules provide tensile and compressive 

strength to the cytoskeleton while allowing for cell mobility, key to processes such as division and 

chemotaxis (15,16,41–45). Further, recent studies have shown that in vitro actin-microtubule composites 

exhibit emergent mechanical properties that are not a simple sum of the single component systems (46–48). 

For example, composites with comparable concentrations of actin and microtubules display both enhanced 

filament mobility and increased stiffness (46), as well as an emergent non-monotonic dependence of 

elasticity on actin crosslinking (47). 

More recently, myosin II minifilaments have been incorporated into actin-microtubule composites, showing 

that synergistic interactions between actin and microtubules prevent disordered flow and rupturing often 

seen in actomyosin networks without crosslinkers (26–28). These studies have also shown that composites 

can be tuned to display enhanced mechanical strength (27), coordinated motion of actin and microtubules, 

sustained ballistic contraction, and mesoscale restructuring (26, 28)–all in the absence of crosslinking 

proteins to chemically connect the filaments. 

Microtubule-based active matter systems have also been engineered using clusters of kinesin motors that 

crosslink and pull on microtubule bundles to create active nematics (23,24,30,31,34,35,49–55). In these 

systems, kinesins generate long-lasting turbulent flows by cyclically extending, buckling, fracturing, and 

healing bundles (49). More recently, actin has been incorporated into active MT fluids, resulting in turbulent 

flow, contraction, or formation of layered asters (29).  

The distinct dynamics and structures that kinesin-driven and myosin-driven systems display begs the 

question as to how different active components and substrates cooperate or compete to control cellular 

processes. While composite active matter is beginning to be developed to introduce more control and 

tunability over single-substrate systems (26–29,56), incorporating two active components that act on 

distinct substrates represents a paradigm shift in active matter. Beyond the cellular relevance, such designs 

can elucidate general principles for non-equilibrium programmable materials that can reconfigure and 

generate force; and determine how to enhance programmability and expand the dynamical and structural 

phase space by altering the active and static nature of crosslinkers and the substrates on which they act. 

Here, we engineer actin-microtubule composites that undergo a rich combination of advective flow, 

contraction, and multi-mode restructuring driven by kinesin and myosin motors. These dynamics are 

coupled to distinct time-evolving structures that range from interpenetrating actin-microtubule scaffolds to 

microscale phase-separated amorphous clusters. We couple differential dynamic microscopy (DDM) with 

particle image velocimetry (PIV) to discover that competition between kinesin-microtubule activity and 

actomyosin activity delays the onset of rapid restructuring while crosslinking of either actin or microtubules 

accelerates the time-evolution of active dynamics. Our advection-diffusion model and spatial correlation 

analyses correlate the dynamic antagonism that we observe with suppressed de-mixing of double-motor 

composites, and the crosslinker-mediated acceleration with enhanced restructuring and clustering. Despite 

these complexities, we find that the broad phase space of active dynamics can be organized into three 

general Classes with distinct types and rates of ballistic motion. 
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Results and Discussion 

Active cytoskeleton composite design and formulation-structure phase space. We first describe our design 

strategy for realizing an active matter system that has two force-generating components that act on two 

distinct, co-entangled, substrates. Namely, we engineer composites of co-entangled microtubules and actin 

(46) and incorporate kinesin clusters and myosin II minifilaments that crosslink and push and pull on pairs 

of microtubules and actin, respectively, to generate force and motion (49, 57) (Fig 1A, SI Fig S1). To 

investigate the extent to which actomyosin and kinesin-microtubule activities act synergistically or 

antagonistically to dictate dynamics, we perform experiments with either kinesin (K, Fig 1B) or both kinesin 

and myosin (K+M, Fig 1B). We further characterize the effect of passive crosslinking of the microtubules 

(MT XL, Fig 1) or actin (Actin XL, Fig 1) at crosslinker:protein molar ratios 𝑅 that are high enough to 

induce measurable changes in the viscoelastic properties, but low enough to prevent filament bundling (47). 

To observe the dynamics of our active cytoskeleton composites, we collect sequential two-color time-series 

of actin and microtubules comprising composites over the ~1 hr time course of measurable active dynamics. 

As shown in Fig 1B, by simply incorporating or omitting myosin motors and passive crosslinkers, we are 

able to drive substantial changes in the active restructuring, emergent dynamics, and programmable phase 

space of non-equilibrium properties (SI Movies S1-S3). 

 

Figure 1. Engineering and characterizing active cytoskeleton composites with varying strain-

generating components and connectivity. A. We co-polymerize actin monomers (2.32 µM) with tubulin 

dimers (3.48 µM) to form co-entangled composite networks of actin filaments (green) and microtubules 

(red). We use NeutrAvidin to passively crosslink biotinylated actin filaments (Actin XL) or microtubules 

(MT XL) at crosslinker:protein molar ratios of 𝑅𝐴 = 0.02 and 𝑅𝑀𝑇  = 0.005 for actin and microtubules, to 

achieve similar distances 𝑑 between crosslinks (48). We incorporate kinesin clusters (orange) and myosin-

II minifilaments (purple) to drive composites out of steady-state. B. We acquire two-color confocal time-

series of actin (green) and microtubules (red) to capture motor-driven dynamics and reconfiguration. Each 

column includes images taken at three different time points, 𝑇 = 5, 20, 35 min, during motor activity for 

composites with: kinesin (K, columns 1,3,5, darker shade borders), kinesin and myosin (K+M, columns 

2,4,6, lighter shade borders), no crosslinking (No XL, blue hues, columns 1,2), actin crosslinking (Actin 

XL, green hues, columns 3,4), and microtubule crosslinking (MT XL, red hues, columns 5,6). Below each 

composite image is a zoom-in of a 25 µm × 25 µm region denoted by a dashed-line box in the main image, 

and single-channel images showing separately the microtubules (middle, red) and actin (right, green). The 

50 µm scale bar in the top right panels apply to all full-size images.  
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All composites begin in similar structural states with interpenetrating networks of actin and microtubules 

uniformly distributed throughout the field of view (Fig 1B, top row). However, each composite formulation 

reconfigures into distinct structural states over activity times of 𝑇 ≈ 30 mins, where 𝑇 = 0 is defined as 

the time at which kinesin is added to the composite. While we do not visualize the motors, the spatially 

uniform active dynamics that we see at the onset of activity indicates that, like the filaments, the motors are 

uniformly mixed throughout the composite. 

Examining the three kinesin-only composites (no myosin), we find that without passive crosslinkers 

composites form loosely-connected MT-rich amorphous clusters. Actin filaments first co-localize in the 

cluster centers, but are then squeezed out into the surrounding space as the clusters contract further and 

disconnect from one another (Fig 1B, dark blue boxes). Passive actin crosslinking hinders this separation 

of actin and MTs, enabling the slow uptake of actin into MT-rich clusters, such that the composite becomes 

a connected network of clusters of co-localized actin and microtubules (Fig 1B, dark green boxes). 

Microtubule crosslinking leads to similar amorphous MT clustering and actin-MT de-mixing as without 

crosslinking; but these MT-rich regions coalesce over time, resulting in larger scale phase separation of 

actin and MTs compared to the non-crosslinked case (Fig 1B, dark red boxes).  

Turning to the double-motor composites that incorporate both kinesin and myosin, we find that the addition 

of myosin impedes the kinesin-driven de-mixing described above and reduces the degree of restructuring 

over the course of activity (Fig 1B, light shaded boxes). This effect can be seen in the images at all time 

points (rows in Fig 1B), in which actin and microtubule networks are more evenly distributed and 

interpenetrating than composites without myosin. Without passive crosslinkers, composites show little 

rearrangement (Fig 1B, light blue boxes), as seen in previous experiments on myosin-driven actin-MT 

composites (26–28). Crosslinking of actin or microtubules enables more restructuring of the double-motor 

composites, but this reconfiguration and de-mixing is still more subdued than that for kinesin-only 

composites (Fig 1B, light green and red boxes).  

 

Actin and microtubules exhibit three distinct classes of coordinated ballistic dynamics. To determine the 

non-equilibrium dynamics that enable this rich formulation-dependent restructuring, i.e., how the system 

gets from one structural state to another, we perform differential dynamic microscopy (DDM) on the actin 

and microtubule channels of each two-channel (i.e., two-color) video. As we describe in Methods and SI, 

DDM analyzes differences of images separated by varying lag times Δ𝑡 in Fourier space to compute image 

structure functions 𝐷(𝑞⃗, Δ𝑡) for different wavevectors 𝑞⃗, which describe how density fluctuations become 

decorrelated for a given spatial scale (i.e., 2𝜋/𝑞) (Fig 2A,B).  

Figure 2A shows two-dimensional image structure functions 𝐷(𝑞𝑥 , 𝑞𝑦 , Δ𝑡) computed for the microtubule 

and actin channels of three videos that are representative of different types of dynamics we measure, which 

we describe below. The plots in the left and right columns correspond to 𝐷(𝑞𝑥 , 𝑞𝑦) for sample ‘short’ and 

‘long’ lag times, Δ𝑡 = 3 s and Δ𝑡 = 20 s, and the color is set by the value of 𝐷(𝑞𝑥 , 𝑞𝑦), with low (blue) 

and high (red) values indicating lower and higher correlation, respectively (see SI Fig S2 for more 

𝐷(𝑞𝑥 , 𝑞𝑦) examples). The first notable feature in Fig 2A (and SI Fig S2) is the similarity in the functional 

form of 𝐷(𝑞𝑥 , 𝑞𝑦) for actin and MT channels of the same video and lag time, indicating that the actin and 

MT network dynamics are well-coupled despite cases in which we observe large-scale de-mixing (Fig 1B). 

The lower magnitudes of actin plots compared to MTs is due to the comparatively lower signal of the actin 

channel. Moreover, the more uniform 𝐷(𝑞𝑥 , 𝑞𝑦) values seen in the purple-bordered plots labeled ‘Slow’, as 

compared to the middle (orange, Fast) and bottom (magenta, Multimode), are indicative of more 

homogeneous and slow motion, in which fluctuations decorrelate less over a given lag time and over 

varying lengthscales (i.e., wave vectors). The modest radial asymmetry seen most clearly in the orange-
bordered plots, is a sign of anisotropic motion, which we discuss in later sections. Finally, the reduced 

correlation at Δ𝑡 = 20 s compared to Δ𝑡 = 3 s, indicates that the decorrelation timescales are <20 s.  
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To quantify the dynamics represented in Fig 2A, we azimuthally-average each 𝐷(𝑞𝑥 , 𝑞𝑦 , Δ𝑡) to compute a 

corresponding one-dimensional function for each lag time, 𝐷(𝑞, Δ𝑡). Figure 2B shows sample 𝐷(𝑞, Δ𝑡) 

curves for the three videos analyzed in Figure 2A. The similarity of 𝐷(𝑞, Δ𝑡) between actin and MT 

fluorescence channels indicates that actin and MT network dynamics are well-coupled, despite apparent 

de-mixing apparent in Fig 1B. We use the distinct functional features of each of these curves to organize 

our data for all composite formulations and activity times into three classes: Slow (top), Fast (middle) and 

Multimode (bottom). Slow curves show a monotonic, slow rise to plateau at large lag times (Fig 2B, top 

panel); Fast curves exhibit oscillations in the decorrelation plateau (Fig 2B, middle panel), and Multimode 

curves reveal two distinct plateaus at well-separated lag times (Fig 2B, bottom panel).  

 

Figure 2. Differential dynamic microscopy reveals ballistic dynamics of composites that separate into 

three dynamically distinct classes. A. Representative two-dimensional image structure functions 

𝐷(𝑞𝑥 , 𝑞𝑦) computed from the ensemble-average of all Δ𝑡 = 3 s (left) and Δ𝑡 = 20 s (right) lag times for 

three representative videos (see SI Movies S1-S3). Color scale is normalized separately for each image, and 

indicates the value of each image structure function [𝐷(𝑞𝑥 , 𝑞𝑦 , Δ𝑡)/𝐷𝑚𝑎𝑥], with blue/red values indicating 

low/high correlation. B. Azimuthally-averaged image structure functions 𝐷(𝑞, Δ𝑡) versus lag time Δ𝑡 

computed from 2D 𝐷(𝑞𝑥 , 𝑞𝑦 , Δ𝑡) functions for microtubules (closed symbols) and actin (open symbols) at 

wavevector 𝑞 = 1.33 μm−1. Black lines are fits to functions with Schulz speed distributions. C. 

Corresponding decay times 𝜏(𝑞) computed from 𝐷(𝑞, Δ𝑡) fits, universally follow 𝜏(𝑞) = (𝑣𝑞)−1 scaling, 

indicative of ballistic motion. Speeds for actin (𝑣𝐴) and microtubules (𝑣𝑀𝑇) determined from fitting the data 

to 𝜏(𝑞) = (𝑣𝑞)−1 are listed. Listed error values are the standard deviation of the corresponding Schulz 

speed distribution.  

 

These non-trivial functional forms cannot be accurately described by exponential functions typically used 

in DDM (26,28,58,59), so we instead use a function that assumes Schulz distributions of speeds, as has 

been used in other ballistic biological systems such as swimming E. coli (60,61) (see Methods and SI). This 
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function captures the oscillatory plateaus seen in the Fast class, and a sum of two Schulz speed distributions 

accurately captures the two-plateau behavior of the Multimode class.  

From the 𝐷(𝑞, Δ𝑡) fits, we extract the decay times, 𝜏(𝑞),  which exhibit a power-law dependence on 𝑞 that 

further quantifies the type and rate of motion (Fig 2C). Despite the varied functional forms of the 𝐷(𝑞, Δ𝑡) 

data shown Fig 2B, the corresponding 𝜏(𝑞) curves for all classes approximately follow power-law scaling 

𝜏(𝑞) ~ 𝑞−1, indicative of ballistic motion for both actin and microtubules. Similar ballistic-like dynamics 

have been previously reported for myosin-driven cytoskeleton composites (26, 28). Fitting each 𝜏(𝑞) curve 

to the power-law relation 𝜏(𝑞) ≃ (〈𝑣〉𝑞)−1 yields the average speed 〈𝑣〉 of each filament type measured 

over the course of the corresponding video. As listed in Fig 2C, we find that 〈𝑣〉 for the Fast class is ~7× 

larger than the Slow 〈𝑣〉. Fitting the Multimode 𝐷(𝑞, Δ𝑡) data results in two distinct 𝜏(𝑞) curves with 

corresponding 〈𝑣〉 values that differ ≳4-fold, suggesting that Multimode composites undergo a combination 

of Slow and Fast dynamics.  

In the following sections, we use the distinct 𝐷(𝑞, Δ𝑡) characteristics described above to correlate the Slow, 

Fast and Multimode classes of dynamics with composite formulation and activity time. Namely, we define 

the Slow class as having 𝐷(𝑞, Δ𝑡) curves that exhibit single, steady large-Δ𝑡 plateaus, Fast curves display 

single large-Δ𝑡 plateaus but with pronounced oscillations, and the Multimode class exhibits two distinct, 

steady 𝐷(𝑞, Δ𝑡) plateaus (Fig 2B).  

 

Motor competition delays the onset of acceleration and suppresses multimode dynamics. Having 

identified quantitative metrics to classify network dynamics, we now determine how the dynamics vary 

with composite formulation and activity time 𝑇. We first evaluate the average actin and microtubule speeds 

〈𝑣〉 determined from the corresponding 𝜏(𝑞) for each time-series (5-13 per formulation) for each of the six 

composite formulations. Figure 3A-C shows 𝑇-dependent effects of crosslinking (different panels) and 

motors (dark vs light shades), with speeds spanning over three orders of magnitude during motor activity. 

Notably, as suggested by the image structure functions shown in Figure 2B, actin and microtubule speeds 

are well-correlated (comparing open and closed symbols) across all composites and activity times, despite 

the varying degrees to which they co-localize or de-mix (Fig 1B).  

We find that actin and microtubules in all composites accelerate and reach a maximum speed 𝑣𝑚𝑎𝑥 at 

activity time, 𝑇(𝑣𝑚𝑎𝑥) (Fig 3D), after which 〈𝑣〉 decreases. By classifying each data point in Fig 3A as 

Slow, Fast or Multimode (Fig 3E), as described above, we measure the average Slow speed to be 〈𝑣〉̅̅ ̅̅
𝑆 ≃ 

0.15 µm/s, which is an order of magnitude slower than the Fast speed of 〈𝑣〉̅̅ ̅̅
𝐹 ≃ 1.8 µm/s. The average 

low and high speeds for Multimode data are comparable to those of Slow and Fast values respectively, with 

〈𝑣〉̅̅ ̅̅
𝑀1 ≃ 0.17 µm/s and 〈𝑣〉̅̅ ̅̅

𝑀2 ≃ 1.7 µm/s.  

We next turn to evaluating how composite programs the different dynamical classes and their dependence 

on activity time 𝑇. The average filament speed for the uncrosslinked kinesin-driven composite (no myosin) 

increases ~20-fold in the first 𝑇 ≈ 20 mins, transitioning from Slow to Mutimode to Fast dynamics (Fig 

3A), reaching 𝑣𝑚𝑎𝑥 ≃ 7 μm/s. Following this initial acceleratory period, the composite slowly decelerates 

over the course of ~40 mins, but never returns to dynamics classified as Slow. Introducing myosin 

substantially delays the onset of acceleratory dynamics, increasing 𝑇(𝑣𝑚𝑎𝑥) by ~3-fold, but has little impact 

on the magnitude of 𝑣𝑚𝑎𝑥 (Fig 3A,D). Moreover, Slow dynamics dominate over more of the activity time 

than for the kinesin-only composite, as seen by the higher proportion of light blue versus dark blue squares 

in (Fig 3A). 

These results indicate that Fast dynamics are due primarily to kinesin-driven motion, as there is minimal 

change in 𝑣𝑚𝑎𝑥 upon addition of myosin; and that myosin activity counteracts kinesin activity to delay the 

onset of Fast dynamics, rather than cooperating synergistically to amplify active dynamics. We can 

understand this competition as follows. 
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Keeping in mind that the actin and microtubules form co-entangled interpenetrating networks of 

comparable mesh sizes, we can assume that every actin filament is sterically interacting with several 

microtubules and other actin filaments and vice versa. Kinesin acts to drive microtubules together, which, 

in turn, attempt to pull co-entangled actin filaments with them, competing with entanglements from other 

actin filaments that resist kinesin-driven straining. However, because actin filaments are more flexible and 

relax faster than MTs, they are able to be swept up with the kinesin-driven microtubule network and then 

diffuse out of MT-rich clusters to maximize their entropy. 

 

 

Figure 3. Kinesin-driven composites undergo acceleration and deceleration that is gated by myosin 

activity and facilitated by crosslinking. A-C. Speeds 〈𝑣〉 of microtubules (MT, closed circles) and actin 

(A, open circles) versus activity time 𝑇 in kinesin-driven composites with no crosslinking (A, blue), actin 

crosslinking (B, green), and microtubule crosslinking (C, red); without myosin (K, darker shades) and with 

myosin (K+M, lighter shades). For Multimode cases, which have two speeds, the slower speed is indicated 

by a star. Data points corresponding to the 𝜏(𝑞) curves shown in Fig 2C are circled in the corresponding 

color (Slow = purple, Fast = orange, Multimode = magenta). Error bars (most too small to see) are the larger 

of the standard error values determined from the Schulz distribution fits and the 𝜏(𝑞) distributions (see 

Methods) D. Maximum speed 𝑣𝑚𝑎𝑥 reached by each composite, denoted by dashed circles in A, plotted 

against the activity time 𝑇 at which 𝑣𝑚𝑎𝑥 occurs. E. Scatterplot of all 106 actin and MT speeds shown in 
A-C, divided into Slow, Fast and Multimode classes. Horizontal lines indicate averages, with the dashed 

line indicating the average of the slower Multimode speeds (stars in A-C).  
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Incorporating myosin into the composites strongly enhances the competition between kinesin-driven 

pulling of actin and steric entanglements by pulling actin filaments together which, in turn, attempt to pull 

interpenetrating microtubules with them, counteracting the force of kinesin driving microtubules together. 

The surprising antagonistic interaction between the two motors may be due to the contractile versus 

extensile nature of actomyosin and kinesin-microtubule activity, respectively (62). Namely, kinesin motors 

are highly processive such that they principally induce nematic bundling, sliding, and extensile motion of 

rigid microtubules, whereas low-duty-ratio myosin motors primarily bend, compress and contract 

semiflexible actin filaments into asters or foci (49,57).  

We expect this competition to manifest structurally as enhanced actin-microtubule mixing and 

interpenetration, as we see in Fig 1B. In other words, while both filament types are pulled towards like 

filaments (actin to actin, MTs to MTs) by their respective motors, entanglements with the other filament 

type resist this motor-driven self-association, thereby facilitating mixing. The net result is reduced 

clustering and increased actin-MT interpenetration in double-motor composites. While the dynamics 

eventually mirror those of kinesin-only composites, the structure remains more homogeneous, as shown in 

Fig 1B.  

The fact that motor antagonism leads to a time-delay rather than suppression of active dynamics, suggests 

that eventually kinesin straining beats out myosin straining, such that the dynamics mirror kinesin-only 

composites, but are gated by myosin activity. Kinesin-microtubule straining likely ‘beats out’ actomyosin 

activity due to the higher density of kinesin clusters compared to myosin minifilaments. As we describe in 

the Methods, in all double-motor composites there are ~75 force-generating kinesin clusters for every 

myosin II minifilament, and the average spacing between kinesin clusters connecting a pair of microtubules 

is ~12 nm compared to ~2.6 μm (>200𝑥 longer) for myosin minifilaments along actin filaments. This 

increased density of strain-generating linkers along microtubules, as well as their higher duty ratio and 

processivity, likely cause the kinesin-MT force-generation to dominate over that of the actomyosin.  

We now turn to the effect of passive crosslinking on single-motor and double-motor composites. As shown 

in Fig 3A, the signatures of motor competition and activity gating seen for un-linked networks are preserved 

upon crosslinking of actin (Fig 3B) or microtubules (Fig 3C). The primary effect of crosslinking is a 

decrease in the maximum speed 𝑣𝑚𝑎𝑥 reached and the time over which the composites accelerate to this 

maximum, 𝑇(𝑣𝑚𝑎𝑥) (Fig 3D). Further, both crosslinking types exhibit Multimode dynamics at the onset of 

activity (red and green triangles and stars), effectively eliminating the initial Slow dynamics seen in un-

linked composites, likely due to crosslinking reducing the degrees of freedom and increasing the 

connectivity of the composites, thereby suppressing spatially uncorrelated microscale fluctuations. In other 

words, largescale restructuring (attributed to Multimode dynamics) and acceleration to 𝑣𝑚𝑎𝑥 is facilitated 

by crosslinking in kinesin-only composites. Conversely, crosslinking of double-motor composites 

eliminates the initial Multimode dynamics seen for their un-linked counterparts, instead switching directly 

from Slow to Fast dynamics with minimal structural reconfiguration. This reduced restructuring of 

crosslinked double-motor composites compared to kinesin-only composites can be seen in Fig 1.  

To further understand the nature of the Slow, Fast and Multimode dynamics, and why crosslinking alters 

the propensity to exhibit each type, we return to our Fig 1 results which show that crosslinking leads to 

larger and denser filament aggregates compared to unlinked cases. The reduced degrees of freedom and 

enhanced connectivity that crosslinking provides may explain this enhanced mesoscale clustering, which, 

in turn, would suppress microscale fluctuations available to the more randomly distributed and less bundled 

filaments that emerge in the un-linked cases. This mechanistic picture suggests that Fast dynamics are 

dominated by coordinated motion or flow of the composite while uncorrelated microscale fluctuations 

describe the Slow dynamics. Conversely, as we describe above, we expect Multimode dynamics to arise 

from mesoscale restructuring, bundling and de-mixing events.  
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Fast, Slow and Multimode classes correlate with distinct velocity fields and distributions. To corroborate 

the mechanisms that we postulate underlie the different dynamical classes in the preceding section, we 

evaluate the directionality and spatiotemporal coordination of the local dynamics that correspond to the 

sample Fast, Slow and Multimode data that we analyze in Fig 2. 

We first create temporal color maps, which colorize each frame by the time it occurs during the video 𝑡, 

and overlay all colorized frames (Fig 4A, SI Fig S3). In this way, the maps depict the motion of the 

composites over the course of each video. Fig 4A shows the color maps for the actin channel, which are 

nearly indistinguishable from the MT channel of the same video (see Fig S3), in line with our DDM results 

that show that actin and MTs within any given composite exhibit similar dynamics (Figs 2,3). The Slow 

map (top panel) shows small-scale, randomly oriented motion while the Fast map shows spatially-

coordinated and nearly unidirectional motion. The Multimode map displays features of both Fast and Slow 

dynamics, exhibiting directionality on small scales but largely uncorrelated motion at larger scales.  

To quantify the features described above, we perform particle image velocimetry (PIV) on the actin and 

microtubule channels of the videos analyzed in Fig 4A. PIV vector fields in Fig 4B and SI Fig S4 show 

overlaid velocity fields at 4 equally-spaced times 𝑡 over the course of the videos analyzed in Fig 4A. Arrow 

lengths and directions represents the average velocity of features over 20 frames (~7.5 s) in the surrounding 

8 × 8 square-pixel (6.7 μm × 6.7 μm) region of the field-of-view.  

As shown in Figures 4B and S4, Slow fields exhibit motion that is slow (small arrows) and randomly 

oriented (no preferred arrow direction), while Fast fields show rapid directional motion with large arrows 

that all point in a similar direction. Multimode fields (Fig 4B, bottom row) reveal features of both Slow and 

Fast modes, as seen by the different arrow sizes and directions. Fig 4C, which shows the histograms of 

speeds computed from PIV analysis of each video, corroborates the dynamics we observe in the sample 

flow fields (Fig 4B) as well as in our DDM analysis (Fig 2C). Namely, the speed distribution for the Fast 
class (middle row) is shifted substantially to the right of that for the Slow video (top row), and the Multimode 

distribution (bottom row) shows two distinct peaks that approximately align with Slow and Fast 
distributions, respectively. To further quantify the speed distributions and compare to our DDM results, we 

fit each histogram to a Schulz distribution (Fig 2C solid lines), which we likewise used in the fitting function 

for the corresponding DDM image structure functions (see SI Methods). We find that the Slow and Fast 
distributions are well described by a single Schulz distribution, while the Multimode distributions require a 

sum of two Schulz distributions. The average speed 〈𝑣〉 and standard deviation 𝜎 determined from each fit 

(listed in the corresponding panel) show that the speeds measured in Fourier space using DDM (Fig 2B) 

and in real space using PIV are statistically indistinguishable (SI Table S2), with average values of 〈𝑣〉̅̅ ̅̅
𝑆 ≈

0.3 μm/s, 〈𝑣〉̅̅ ̅̅
𝐹 ≈ 1.7 μm/s, 〈𝑣〉̅̅ ̅̅

𝑀1 ≈ 0.2 μm/s and 〈𝑣〉̅̅ ̅̅
𝑀2 ≈ 0.8 μm/s for Slow (S), Fast (F), and 

Multimode (M1,M2) videos, respectively. 

Motivated by the apparent class-dependent anisotropy (or lack thereof) in the PIV vector fields, we also 

evaluate the corresponding velocity orientation distributions (Fig 4D) which reveal isotropic motion for the 

Slow class, with no perceptible peak and comparable occurrences of all angles, compared to sustained 

unidirectional Fast motion, as evidenced by the sharply peaked narrow distribution. The Multimode 

distribution displays features of both Fast and Slow distributions, with a broader sampling of directions 

compared to Fast but with more pronounced peaks compared Slow.  

As noted in the previous section, we also see evidence of anisotropic dynamics in our DDM analysis, 

manifested as radial asymmetry in the 𝐷(𝑞𝑥 , 𝑞𝑦 , Δ𝑡) plots for the Fast class and to a lesser extent in the 

Multimode plots (Fig 2A, SI Fig S2). To quantify this anisotropy in Fourier space we compute an anisotropy 

factor 𝐴𝐹(𝑞, 𝑡) by computing weighted azimuthal integrals of the DDM image structure function (detailed 

in Methods and SI (62)). 𝐴𝐹 can assume values between -1 and 1 for 𝑥- and 𝑦- directed motion, respectively, 

with 𝐴𝐹 = 0 indicating isotropic motion. Fig 4E shows that the distribution of 𝐴𝐹 values for Slow and Fast 

classes exhibit distinct peaks at 𝐴𝐹 ≈ 0 and 𝐴𝐹 > 0, indicative of isotropic and 𝑦-oriented motion, 

respectively. Conversely, the Multimode distribution is broader with multiple peaks that span from 𝐴𝐹 < 0 
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to 𝐴𝐹 > 0 and include a significant fraction of near-zero values. Likewise, the Multimode PIV orientation 

distribution samples a broad range of angles (isotropic, 𝐴𝐹 = 0) while also exhibiting distinct peaks 

(directionality, |𝐴𝐹| > 0  ). 

 

 

Figure 4. Slow, Fast and Multimode dynamics classified via DDM exhibit distinct PIV velocity fields 

and distributions. A. Temporal color maps which colorize the features in each 213 µm × 213 µm frame 

according to the time 𝑡 the frame is captured during the video, as indicated by the colorscale (𝑡 = 0 min 

(red) to 𝑡 = 6.28 min (purple)), depict the motion of the composites. Slow (top, purple border), Fast 

(middle, orange border), and Multimode (bottom, magenta border) color maps correspond to the actin 

channel of the representative videos analyzed in Fig 2. B. Particle Image Velocimetry (PIV) performed on 

the videos analyzed in A, determines corresponding velocity vector fields in which each arrow represents 

the average velocity 𝑣(𝑡) for an 8×8 square-pixel region of the 213 µm × 213 µm field. PIV vector fields 

for 𝑡 = 0 s (red), 125 s (yellow), 251 s (green) and 377 s (purple) are overlaid in each panel. Insets are 

zoom-ins of 25 µm × 25 µm regions as indicated in the top panel. C. Probability distributions of speeds, 

determined via PIV, across all vectors in all frames of the actin (open bars) and MT (filled bars) channels 

of the videos analyzed in B. The solid lines are fits of each distribution to a Schulz distribution function, 

which describes the functional form of speed distributions assumed in DDM analysis. The average speed 

〈𝑣〉 and standard deviation 𝜎 determined from each fit is listed in the corresponding panel in units of µm/s. 

The Multimode distribution (bottom panel, magenta) is fit to a sum of two Schulz distributions with different 

〈𝑣〉 and 𝜎 values listed in the panel. D. Probability distributions of the velocity orientations that correspond 

to the Slow (purple), Fast (orange) and Multimode (magenta) actin speed distributions shown in C. E. 

Probability distributions of anisotropy factors 𝐴𝐹 computed from instantaneous DDM image structure 

functions 𝐷𝑖  for the same data analyzed in A-D. Dashed vertical line at 𝐴𝐹 = 0 indicates isotropic dynamics 

whereas 𝐴𝐹 > 0 and 𝐴𝐹 < 0 correspond to motion in the 𝑦-direction (~𝜋/2) and 𝑥-direction (~𝜋), 

respectively. All probability distributions are dimensionless and reflect the probability that a value of the 

speed (C), velocity orientation (D), or anisotropy factor (E) is within the range specified by the width of the 

corresponding bar. 
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Spatiotemporal variations in dynamics are suppressed by motor antagonism. To better elucidate the 

mechanisms dictating the different dynamical classes, and the influence of motor antagonism on said 

mechanisms, we use both DDM and PIV to resolve variations in the short-time dynamics of the composites, 

i.e., those that occur within the time 𝑡 of a given video.  

We first evaluate the average speed 𝑣̅(𝑡) as a function of time 𝑡 for the actin and microtubule channels of 

each video analyzed in Figs 2 and 4, which we compute from the corresponding PIV vector fields, where 

𝑣̅ is averaged over all vectors in a single field. As shown in the 𝑣̅(𝑡) plots in Fig 5A, Slow and Fast dynamics 

are largely stationary over the course of a given video, with nearly constant speeds. In contrast, the 

Multimode traces show discrete and abrupt shifts from intermediate to fast motion to steady slow motion.  

Observing the time dependence of the corresponding average velocity orientations 𝜃̅(𝑡), we find similar 

trends as for 𝑣̅(𝑡), whereby the directionality of the both Fast and Slow examples is nearly independent of 

𝑡, while the average orientation of Multimode vectors undergoes an abrupt and discrete shift at 𝑡 ≃ 60 s. 

To corroborate and better characterize the apparent stationarity of Slow and Fast class dynamics and the 

non-stationary Multimode dynamics shown in Fig 5A,B, we compute instantaneous DDM image structure 

functions 𝐷𝑖(𝑞, Δ𝑡, 𝑡), which, unlike the 𝐷(𝑞, Δ𝑡) curves shown in Fig 2B, are not averaged over time 𝑡 

(62). For a system such as Brownian particles or one where the dynamics are smooth and continuous, one 

would expect the values of 𝐷𝑖  at a particular q-value and Δ𝑡 and across all times t to be symmetric about 

𝐷(𝑞, Δ𝑡) = 〈𝐷𝑖(𝑞, Δ𝑡, 𝑡)〉𝑡. However, samples exhibiting intermittent or temporally varying dynamics may 

exhibit a skewed distribution of 𝐷𝑖  across times t. Therefore, we evaluate the probability distribution of 

𝐷𝑖(𝑞, Δ𝑡) values for all 𝑡 in a given video to determine the extent to which dynamics are temporally 

heterogeneous during the acquisition time. Ergodic stationary dynamics are expected to yield Gaussian 

distributions of our correlation function, 𝐷𝑖(𝑞, Δ𝑡, 𝑡). As shown in Fig 5C, the Fast and Slow distributions 

are strongly overlapping, with the Slow distribution being well fit to a Gaussian function. Conversely, the 

Multimode distribution is distinctly non-Gaussian–with no obvious peak, a broad distribution of values, and 

significant noise–indicative of large intermittent fluctuations in structural correlation (62, 63).  

To quantify the extent to which the temporal 𝐷𝑖  distributions deviate from Gaussianity, we compute the 

skewness 𝑆𝐾 = (〈𝐷𝑖 − 𝐷〉)3 (〈(𝐷𝑖 − 𝐷)2〉)3 2⁄⁄ , which is zero for a Gaussian distribution. For reference, 

the distributions shown in Fig 5C have skewness values of 𝑆𝐾,𝑆 ≃ 0.42, 𝑆𝐾,𝐹 ≃ 0.66, and 𝑆𝐾,𝑀 ≃ 0.86 for 

the Slow, Fast and Multimode classes, respectively. Positive skewness, largest for Multimode distributions, 

has been reported for colloidal gels that are en route towards arrest, and has been interpreted as arising from 

discrete restructuring processes such as coalescing or rupturing, as well as intermittent fluctuations and 

rearrangements (62).  

To determine the prevalence of non-stationary dynamics across the formulation phase space and activity 

times, we compute skewness values for all composite formulations and times 𝑇 evaluated in Figure 3. Fig 

5D-I shows stacked confidence ellipse plots comparing skewness 𝑆𝐾, average speeds 〈𝑣〉 and anisotropy 

factors 𝐴𝐹 colorized by dynamical class and separated into panels for kinesin-driven composites without 

(Fig 5D,F,H) and with (Fig 5E,G,I) myosin. The individual points correspond to all data points shown in 

Fig 3 and the ellipses enclose one standard deviation around the mean. As shown, the Multimode data 

exhibit the largest skewness values, as seen by the magenta ellipses being furthest to the right in Fig 5F,H. 

Fast and Slow 𝑆𝐾 values are similar to one another and deviate less from zero. The higher skewness for 

Multimode data is coupled with relatively fast speeds (Fig 5F) but low anisotropy (Fig 5H). These couplings 

further support our interpretation that Multimode dynamics arise from large intermittent restructuring events 

which we expect to have no preferred directionality but give rise to periods of time – e.g., during a 

restructuring event – that exhibit fast dynamics.  

Comparison of the composites driven by kinesin only (Fig 5D,F,H; darker shades) versus two motors (Fig 

5E,G,I; lighter shades) reveals that the presence of myosin nearly eliminates Multimode dynamics, as 

evidenced by the lack of magenta ellipses in Fig 5E,G,I. Further, the distributions of data points for the 

double-motor composites generally exhibit smaller skewness values as compared to kinesin-only 
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composites, as seen by the ellipses shifted to the left in Fig 5G,I compared to Fig 5F,H. Despite these 

differences, we also observe that the distributions of speeds for composites with and without myosin are 

not significantly distinct, as we discussed in the previous section (also see Fig 3). 

 

Figure 5. Non-stationary short-timescale dynamics, unique to the Multimode class, indicate discrete 

intermittent restructuring. A. Average speed 𝑣̅(𝑡) versus time 𝑡 measured via PIV for the actin and MT 

channels of the representative Slow (purple), Fast (orange) and Multimode (magenta) videos analyzed in 

Fig 4. 𝑣̅(𝑡) for each time 𝑡 is an average over all vector magnitudes in the PIV flow field associated with 

time 𝑡. B. Average velocity orientations 𝜃̅(𝑡) versus 𝑡 computed from the same vector fields following the 

same method as in A. C. Probability distributions of instantaneous image structure function values, 

𝐷𝑖(𝑞, Δ𝑡, 𝑡), over 𝑡 for 𝑞 = 0.30 μm−1 and Δ𝑡 ≤ 3.8 s (lag times comparable to or less than typical 

characteristic decorrelation times) computed for the videos evaluated in A and B. To better compare the 

probability distributions for the different classes, 𝐷𝑖  is normalized by the 𝑡-averaged image structure 

function, 𝐷 =  〈𝐷𝑖〉𝑡. Probabilities are dimensionless and reflect the probability that a value of (𝐷𝑖 − 𝐷)/𝐷 

is within the range specified by the width of the bars. The solid purple line is a fit of the Slow distribution 

to a Gaussian function.  Deviation from Gaussianity indicates sporadic discrete structural changes and is 

quantified by skewness 𝑆𝐾. The distributions shown for 𝑞 = 0.30 μm−1 are similar to distributions for the 

other measured 𝑞-values. D-I. Stacked 3-dimensional confidence ellipse plots show the relationships 

between average speed 〈𝑣〉 (D-G, brown axes), anisotropy factor magnitude |𝐴𝐹| (D,E,H,I, teal axes), and 

skewness 𝑆𝐾 (F-I, gold axes). Data points, with colors and symbols indicating dynamical class according 

to the legend, correspond to the 106 data points plotted in Fig 3, and the ellipses enclose one standard 

deviation around the mean. Panels with darker shaded (D,F,H) and lighter shaded (E,G,I) ellipses display 

data for composites with kinesin (K) and both kinesin and myosin (K+M), respectively.   

 

Taken together, these results demonstrate the Multimode dynamics arise from discrete and abrupt 

restructuring events and coarsening, and the presence of myosin suppresses this restructuring, such that 

double-motor composites exhibit very few instances of Multimode dynamics and remain more 

homogenously mixed at the end of activity. In the absence of mesoscale discrete restructuring, the double-

motor networks take longer to coarsen and switch to Fast coordinated flow.  

 

Motor competition inhibits composite restructuring and de-mixing that is enhanced by crosslinking. To 

connect the dynamics we measure with various structures and reconfiguration, we develop a minimal model 

that aims to capture the key dynamical features of our composites. As described in Methods and SI, our 
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model simulates filament motion that arises from motor-driven advection and thermal diffusion and works 

against steric hindrances and viscous traps due to motor and protein cross-linking. We purposefully simplify 

the model, ignoring details such as filament flexibility and individual motor dynamics that other models 

incorporate (64–66), to facilitate applications to other systems and identify the key parameters that dictate 

the experimental phenomena we observe.  

Our model simulations show that all composites start as homogeneous interpenetrating networks of actin 

and microtubules at 𝑇 = 0 (SI Fig S9), as we see in experiments (Fig 1B), but subsequently restructure to 

varying degrees depending on the composite formulation. Figure 6A, which shows sample simulation 

snapshots of the final states (𝑇 = 𝑇𝐹) of the six composite formulations, reveals strong suppression of 

restructuring by motor competition, similar to our experimental observations, with the K+M composites 

undergoing substantially less restructuring and de-mixing than the kinesin-only composites. Also in line 

with experiments, crosslinking of either actin or MTs in simulated composites enhances aggregation and 

clustering compared to composites without crosslinkers.  This agreement between the model predictions 

and experimental observations suggests that it is the balance between frictional jamming and motor-driven 

de-mixing that dictates the different formulation-dependent structural regimes. 

To quantify the degree of restructuring in simulations, we compute the probability distributions of like 

filaments (𝑔𝐴/𝑀𝑇−𝐴/𝑀𝑇(𝑟)) and unlike filaments (𝑔𝐴/𝑀𝑇−𝑀𝑇/𝐴(𝑟)) a radial distance 𝑟 from a given 

actin/microtubule (A/MT) for the initial (𝑇 = 0) and final (𝑇 = 𝑇𝐹) states of all composites (see SI 

Methods). For homogeneous, well-mixed networks, all distributions should equate to 1 for all 𝑟 values, 

which we find to be the case for the initial states of all simulated composites (SI Fig S9). The more 𝑔𝐴−𝐴(𝑟) 

or 𝑔𝑀𝑇−𝑀𝑇(𝑟) values are above 1 the more clustering of actin or microtubules, respectively. Conversely, 

𝑔𝐴−𝑀𝑇(𝑟) < 1 or 𝑔𝑀𝑇−𝐴(𝑟) < 1 indicates segregation and de-mixing of actin from microtubules or vice 

versa. Fig 6B-E, plots the differences between the final and initial distributions, e.g. ∆𝑔𝐴−𝐴 = 𝑔𝐴−𝐴(𝑟, 
𝑇𝐹) − 𝑔𝐴−𝐴(𝑟, 0), such that values of zero indicate minimal restructuring while positive ‘like’ distributions 

and negative ‘unlike’ distributions indicate like-filament clustering and de-mixing of unlike filaments, 

respectively. As shown, the composites with kinesin and myosin show minimal de-mixing regardless of 

crosslinking (∆𝑔 ≈ 0 in Fig 6C,E), while all composites without myosin show signatures of clustering and 

de-mixing which is generally more pronounced in the crosslinked composites (Fig 6B,D). 

Finally, to directly compare the predicted and experimental restructuring, we perform identical spatial 

image autocorrelation (SIA) analysis (see Methods) on the initial and final experimental videos and 

simulation snapshots. SIA computes the correlation in intensities 𝑔𝐼(𝑟) between two pixels separated by a 

radial distance 𝑟 in a given image, such that 𝑔𝐼(𝑟) indicates the lengthscales over which structural features 

in an image are correlated. Specifically, 𝑔𝐼(𝑟) values range from 1 for complete correlation (such as when 

𝑟 = 0) and 0 for complete decorrelation, e.g., for 𝑟 values much larger than the size of structural features. 

Similar to Fig 6B-E, we evaluate the differences between final and initial correlation functions ∆𝑔𝐼(𝑟) for 

actin and microtubules in all simulated composites (Fig 6H,I), which we compare to experimental values 

(Fig 6F,G). We find that, in both experiments and simulations, the presence of myosin reduces the distance 

over which structural correlations are enhanced over the time-course of motor activity, evidenced as faster 

decay in ∆𝑔𝐼(𝑟) with increasing r in Fig 6G,I compared to Fig 6F,H. This feature is indicative of reduced 

large-scale clustering and de-mixing of actin and microtubules, as is also evident in Figs 1B and 6A. 

Moreover, in both experiment and simulations, passive crosslinking generally leads to increased structural 

correlations (larger ∆𝑔𝐼  values) compared to composites without crosslinkers, in particular at larger 

distances and for actin crosslinking. The increased aggregation with actin crosslinking manifests in 

experiments as minimal decay and non-monotonic dependence of ∆𝑔𝐼(𝑟) with increasing 𝑟, for actin and 

microtubules, respectively, indicative of fewer small-scale clusters and increased mesoscale (>10 μm) 

structural correlations. In simulations, increased aggregation can be seen as larger ∆𝑔𝐼  values in the 

presence of actin crosslinkers across all lengthscales. 

 



 14 

 

Figure 6. Minimal advection-diffusion modeling characterizes and corroborates expected motor-

driven restructuring. A. Simulation snapshots, each 155 μm × 155 μm, show sample final configurations 

of microtubules (red) and actin (green) in composites with no passive crosslinking (No XL, blue borders), 

actin crosslinking (Actin XL, green borders) and microtubule crosslinking (MT XL, red borders), subject 

to active forcing by kinesin (K, darker borders) or both kinesin and myosin (K+M, lighter borders). 

Simulation details are provided in SI Methods and Table S1. B-I. The difference between the initial (𝑇 =
0) and final (𝑇 = 𝑇𝐹) values of various structural correlation functions, ∆𝑔_(𝑟) = 𝑔_(𝑟, 𝑇𝐹) − 𝑔_(𝑟, 0), 

versus radial distance 𝑟 between two filaments (B-E) or pixels (F-I) for composites depicted in A. The type 

of passive crosslinking is color-coded according to the border colors in A.  B,C. The difference in like-

filament distributions for actin (∆𝑔𝐴−𝐴, open symbols) and microtubules (𝑔𝑀𝑇−𝑀𝑇 , filled symbols) in 

composites with (B) kinesin or (C) both kinesin and myosin. D,E. Unlike-filament distribution differences 

for (D) actin (𝑔𝐴−𝑀𝑇 , open symbols) and (E) microtubules (𝑔𝑀𝑇−𝐴, filled symbols) for the composites 

analyzed in B and C. F-I. Spatial image autocorrelation differences ∆𝑔𝐼  for actin (open symbols) and 

microtubules (filled symbols) computed from (F,G) experimental time-series and (H,I) simulation 

snapshots for composites with (F,H) kinesin or (G,I) both kinesin and myosin. Error bars for simulations 

are standard error across 3 replicates, and for experiments are standard error across 100 images from 3 

independent time-series. 

 

We note that given the simplicity of our model and the simulated renderings of the composites, as well as 

the noise in our microscope images, as can be seen in Fig 1 and SI Movies S1-S3, we do not expect 

quantitative agreement between experiment and simulations. Rather, we aim to capture qualitatively similar 

dependences of structural features on crosslinking and motor competition, as we describe above. Namely, 

the presence of myosin inhibits restructuring while the passive crosslinking enhances it. The generally 

larger ∆𝑔𝐼  values measured in experiments compared to simulations is likely due to the noise and finite 

depth of the experimental images which limit the occurrence of ‘empty space’ seen in simulated composites, 

thereby overestimating correlations across lengthscales. Moreover, the flexibility of the actin filaments, not 

accounted for in the model, may also allow for greater restructuring and larger clusters to form.  

To understand the underlying mechanisms driving this restructuring more fully, we consider that while 

kinesin motor activity adds to the advective term for microtubules in the model, the processive nature of 

kinesin also increases the drag on the microtubules. Conversely, addition of non-processive myosin motors 
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increases filament advection with a relatively smaller increase in drag. Thus, kinesin activity acts to collect 

microtubules into locally arrested clusters that can either sweep up or squeeze out actin filaments. The 

addition of passive crosslinking of actin or microtubules accelerates this process by facilitating coalescence 

of smaller clusters into larger ones. On the other hand, myosin activity allows for filament redistribution 

within clusters and diffusive migration of filaments out of clustered regions, thereby inhibiting segregation 

between actin and microtubules and increasing the rate at which newly formed clusters can dissolve back 

into a mixed state. Succinctly stated, motor antagonism can arise from an interplay between competitive 

motor-driven advection and frictional drag, irrespective of its origin–steric interactions or passive or active 

crosslinking. 

 

Conclusion 

The cytoskeleton is a non-equilibrium multifunctional composite comprising diverse protein filaments, 

motors, and crosslinkers that cooperate and compete to enable diverse cellular structures and processes. As 

such, the cytoskeleton is one of the primary inspirations to the burgeoning field of active matter, and much 

of current active matter research seeks to learn from and emulate the cytoskeleton. The composite nature 

of the cytoskeleton, which confers its signature versatility and programmability, is one of its hallmarks. 

Yet, current active matter platforms are largely limited to a single force-generating component and/or 

substrate. We address this gap by engineering co-entangled and crosslinked composites of microtubules 

and actin filaments driven by kinesin and myosin motors–breaking new ground in active matter design by 

incorporating multiple independently tunable force-generating components and active substrates.  

By coupling Fourier-space and real-space analyses (DDM and PIV) we show that composites undergo a 

combination of Fast advective flow, Slow isotropic fluctuations, and Multimode restructuring that result in 

structures ranging from interpenetrating actin-microtubule scaffolds to de-mixed amorphous clusters. 

Surprisingly, competition between kinesin and myosin straining delays the onset of kinesin-driven 

acceleration without appreciably changing the range of speeds the different composites exhibit. Motor 

antagonism also suppresses mesoscale restructuring events that underlie Multimode dynamics thereby 

sustaining mixed networks of actin and microtubules. Conversely, passive crosslinking hastens the onset of 

kinesin-mediated acceleration and subsequent deceleration by enhancing network connectivity and 

suppressing uncorrelated microscale motion. Importantly, the emergent dynamics and extensive 

programmable phase space of non-equilibrium properties we reveal are a result of very subtle changes in 

substrate connectivity and activity.  

Our work brings reconstituted cytoskeleton systems an important step closer to mimicking the complexity 

of the active composite cytoskeleton by integrating two distinct and ubiquitous motor-filament systems–

actomyosin and kinesin-microtubule networks–that have been shown to interact and co-mediate important 

cellular processes including morphogenesis and exocytosis (71,72), mechanosensation (69), and migration 

and stiffening (70). Interactions between actomyosin, kinesin and microtubules have also been implicated 

in wound healing, mitosis, and cytoplasmic streaming (7, 15, 16, 28, 43, 71–73). As the motor and filament 

concentrations in our composites are within physiological ranges (74), our results may offer insight into the 

macromolecular dynamics and interactions that contribute to these cellular processes.   

For example, Ref 73 investigates the dynamics of vesicles, moving along microtubules via kinesin, and the 

actin mesh that surrounds the vesicles, in oocytes. The authors use PIV and DDM to demonstrate that both 

vesicles and actin exhibit a combination of ballistic advection and active diffusion. These multimodal 

dynamics, with speeds and diffusion coefficients similar between vesicles and actin, are reminiscent of the 

Multimode dynamics we measure, which are likewise similar between actin and microtubules. Ref 73 

further reports that the ballistic component requires microtubules while active diffusion is dictated by the 

actin mesh. Similar in spirit, our results suggest that the Fast mode is driven by kinesin, while actomyosin 

activity delays this advection. Finally, Ref 73 suggests that crosslinking of actin and microtubules may play 
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an important role in determining vesicle dynamics, speeding up the ballistic contribution, similar to the 

effect that crosslinking of either actin or microtubules has on the dynamics we measure.  

However, there are several key differences between our results and those of Ref 73 that point to distinct 

mechanisms at play. We find that both modes are ballistic, rather than a diffusive and ballistic term; and 

the speeds we measure are at least an order of magnitude faster. This effect is likely due to the increased 

motor activity and reduced crowding in our system compared to Ref 73. The non-equilibrium actin 

dynamics in Ref 73 arise from active filament assembly and disassembly via actin binding proteins, rather 

than the direct push and pull of myosin motors. This difference is likely what underlies the slow ballistic 

motion we measure compared to active diffusion. Moreover, while Ref 73 reports that actin slows vesicle 

diffusion via steric constraints, we find that actomyosin activity simply delays the onset of fast kinesin-

driven flow, with little impact on the measured speeds, suggestive of competition between kinesin and 

myosin. In addition, we measure the dynamics of microtubules being acted on by many kinesin motors, 

rather than vesicles that are carried by a single kinesin motor. The collective action of many kinesin motors 

pushing and pulling on connected microtubules likely gives rise to the faster dynamics we measure. Finally, 

we note that cell-like confinement of in vitro cytoskeletal networks has been shown to play a key role in 

recapitulating dynamics and structures seen in cells (75–77). We plan to build in this layer of complexity 

in our future work (78).  

Beyond the biological relevance, the programmability of our composites, with multiple well-controlled 

tuning knobs–motors, filaments and crosslinkers–which can each be varied independently while 

maintaining composite integrity, opens the door for reconfigurable materials that can be programmed to 

exhibit varying types and rates of motion and restructuring over broad spatiotemporal scales. For example, 

materials based on our designs could be used as spatially-controlled micro-actuators, responsive filtration 

and sequestration devices, and self-curing and self-repairing infrastructure technologies. Our minimal 

advection-diffusion model that recapitulates our experimental trends, is broadly applicable to active 

composite networks, and lays the foundation for more complex predictive models that quantitatively 

capture the structure and dynamics of composite active matter. As such, we anticipate our double-motor 

material design, intriguing dynamical results, and corresponding modeling framework, will spark a new 

class of studies that explore the broad parameter space of this platform. 

 

Methods 

See SI Methods Section for more detailed descriptions of each of the following sections. 

Protein Preparation: Rabbit skeletal actin monomers (Cytoskeleton), biotin-actin monomers 

(Cytoskeleton), porcine brain tubulin dimers (Cytoskeleton), biotin-tubulin dimers (Cytoskeleton), 

rhodamine-labeled tubulin dimers (Cytoskeleton), and myosin-II (Cytoskeleton), are reconstituted and 

flash-frozen into single-use aliquots according to previously described protocols (28, 48). Biotinylated 

kinesin-401 is expressed in Rosetta (DE3)pLysS competent E. coli (ThermoFisher) and purified as 

described in the SI.  

For composites that incorporate actin or microtubule crosslinking, actin-actin or microtubule-microtubule 

crosslinker complexes are prepared according to previously described protocols (48). In brief, biotin-actin 

or biotin-tubulin is combined with NeutrAvidin and free biotin at a ratio of 2:2:1 protein:free 

biotin:NeutrAvidin. 

Immediately prior to experiments: myosin-II is purified as previously described (27) and stored at 4°C, and 

kinesin clusters are formed by incubating dimers at a 2:1 ratio with NeutrAvidin with 4 µM DTT for 30 

minutes at 4°C.  

Active Cytoskeleton Composite Preparation: Actin-microtubule composites are formed by polymerizing 

2.32 μM unlabeled actin monomers and 3.48 μM tubulin dimers (5% rhodamine-labeled) in PEM-100 (100 
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mM PIPES, 2 mM MgCl2, 2 mM EGTA) supplemented with 0.1% Tween, 10 mM ATP, 4 mM GTP, 5 μM 

Taxol, and 0.47 μM AlexaFluor488-phalloidin (Life Technologies) to label the actin.  

For crosslinked composites, a portion of either actin monomers or tubulin dimers is replaced with equivalent 

crosslinker complexes to achieve the same overall actin and tubulin concentrations and crosslinker:protein 

ratios of 𝑅𝐴 = 0.02 for actin or 𝑅𝑀𝑇= 0.005 for microtubules. 𝑅𝐴 and 𝑅𝑀𝑇  values are chosen to achieve 

similar lengths between crosslinkers 𝑑 along actin filaments and microtubules (𝑑𝐴 ≃ 60 nm, 𝑑𝑀𝑇 ≃ 67 nm) 

(48) and to be high enough to induce measurable changes in the viscoelasticity compared to unlinked 

networks, but low enough to prevent filament bundling. 

Composites are polymerized for 30 mins at 37°C, after which 1.86 μM phalloidin is added and the 

composite is incubated for 10 mins at room temperature. 50 μM blebbistatin is added to inhibit myosin-

actin interaction prior to de-activation via 488 nm illumination (26), and an oxygen scavenging system is 

added. Finally, 0.47 μM myosin-II and 0.35 μM kinesin are added. Concentrations of actin, tubulin, myosin-

II and kinesin are within reported physiological ranges (74, 79, 80). 

While myosin activity is controlled by blebbistatin de-activation, kinesin starts to act immediately, so 𝑇 =
0 for each experiment is set as the time kinesin is added. Each sample is gently flowed into a ~1 mm × 24 

mm sample chamber composed of a silanized (81) coverslip and microscope slide fused together by a ~100 

μm thick parafilm spacer and sealed with epoxy, creating an airtight chamber.  

Fluorescence Microscopy: Imaging of AlexaFluor488-labeled actin and rhodamine-labeled microtubules 

comprising composites is performed using a Nikon A1R laser scanning confocal microscope with a 60× 

1.4 NA oil-immersion objective (Nikon), 488 nm laser with 488/525 nm excitation/emission filters, and 

561 nm laser with 565/591 nm excitation/emission filters. 488 nm illumination also locally de-activates 

blebbistatin (26–28). Time-series (videos) of 256 × 256 square-pixel (213 μm × 213 μm) images are 

collected at 2.65 fps for a maximum video time of 𝑡𝑚𝑎𝑥 = 1000 frames (~377 s ≃ 6.28 mins). Imaging 

begins 5 mins after the addition of kinesin motors (𝑇 = 5 min) in the middle of the ~100 μm thick sample 

chamber. Each successive video is collected in a different field of view of the same sample until there is no 

longer any discernible restructuring or motion (𝑇 ≃ 60 − 120 mins). 7-15 videos are collected for each of 

the six formulations (no crosslinking, actin crosslinking and microtubule crosslinking; with and without 

myosin). Each video includes two channels that separate the actin and microtubule signals such that they 

can be processed separately and compared. 

Differential Dynamic Microscopy (DDM): DDM is performed on the actin and microtubule channels of 

each video as described previously (28). Image structure functions are determined by taking the square of 

2D Fourier transforms of differences between an image at time 𝑡 and one at 𝑡 + Δ𝑡. This yields the 

instantaneous image structure function, 𝐷𝑖(𝑞𝑥 , 𝑞𝑦 , Δ𝑡, 𝑡) where 𝑞𝑥 and 𝑞𝑦 are 𝑥 and 𝑦 components of the 

wave vector 𝑞⃗. As typically done in DDM analysis, we average 𝐷𝑖  over all times 𝑡 (frames) of a given 

video, and all wave vectors 𝑞⃗ with the same magnitude 𝑞, to determine the 1D image structure function 

𝐷(𝑞, Δ𝑡) that can be fit to various models. We fit 𝐷(𝑞, Δ𝑡) versus Δ𝑡 for each wave vector 𝑞 to a model in 

which the distribution of speeds are described by one or two Schulz functions (60) (see SI Methods), as has 

been used to describe other ballistic biological systems (60, 61). In cases in which one distribution is used 

to describe the data (Slow and Fast data), there are 4 free parameters (𝐴, 𝐵, 𝜏1, 𝑍1), whereas for Multimode 

data, there are 7 (adding 𝜏2, 𝑍2, 𝑓) (see SI Methods). For each video, we perform fits for at least 40 different 

𝑞 values in the range 𝑞 = 0.8 − 2 μm−1 (~3 – 8 μm), from which we extract 𝜏(𝑞) curves for the actin and 

microtubule channels. By fitting each 𝜏(𝑞) curve to 𝜏(𝑞) = (〈𝑣〉𝑞)−1 we compute the average speed 〈𝑣〉 
for each channel of each video. We determine the error associated with 〈𝑣〉 using two methods. First, we 

compute 𝑣 from each individual (𝜏,𝑞) pair (i.e., 𝑣 = 1/𝜏𝑞) and determine the standard error across those 

values. Secondly, we use the Schulz parameter 𝑍 determined from our 𝐷(𝑞, Δ𝑡) fits and our measured 〈𝑣〉 

value to compute the standard deviation 𝜎 and corresponding standard error via the relation 𝑍 = (
〈𝑣〉

𝜎
)

2
−

1. Error bars shown in Fig 3 are the larger of the two values for each case.  
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To determine the degree to which dynamics deviate from radial symmetry, implying directionality, we 

compute the anisotropy factor 𝐴𝐹  of 𝐷𝑖(𝑞𝑥 , 𝑞𝑦 , Δ𝑡, 𝑡) in 𝑞-space by computing 𝐴𝐹(𝑞, ∆𝑡, 𝑡) =

∫ 𝐷(𝑞, Δ𝑡, 𝜃) cos(2𝜃) 𝑑𝜃
2𝜋

0
∫ 𝐷(𝑞, Δ𝑡, 𝜃)𝑑𝜃

2𝜋

0
⁄  and averaging over 𝑞, ∆𝑡 and 𝑡 (82, 83). 𝜃 is defined 

relative to the positive 𝑦-axis such that 𝐴𝐹 > 0  and 𝐴𝐹 < 0  correspond to motion along the 𝑦- and 𝑥-

direction, respectively, and 𝐴𝐹 = 0 indicates isotropic motion.  

To evaluate the time-dependence of dynamics over short timescales (within the time 𝑡 of a single video), 

we also investigate the temporal distribution of instantaneous image structure functions 𝐷𝑖(𝑞𝑥 , 𝑞𝑦 , Δ𝑡, 𝑡) for 

a given Δ𝑡 and 𝑞. For steady-state dynamics, one would expect this distribution to be Gaussian. Deviations 

from Gaussianity indicate sporadic events which cause larger than typical structural decorrelations. We 

quantify this non-Gaussian behavior by evaluating the skewness, 𝑆𝐾 = (〈𝐷𝑖 − 𝐷〉)3 (〈(𝐷𝑖 − 𝐷)2〉)3 2⁄⁄ , 

where the average is over Δ𝑡 and 𝑞.  

Particle Image Velocimetry (PIV): PIV analysis is performed using the GPU-accelerated version of Open-

PIV (84). Interrogation windows of 8×8 square-pixels, with a 4×4 square-pixel overlap, are used to 

generate 64 × 64 grids of velocities for microtubule and actin channels of each time-series. Average 

velocities 𝑣 for each interrogation window are determined from image pairs separated by Δ𝑡 =10 frames 

(~3.77 s). From the measured velocities, we determine the distribution of individual speeds 𝑣(𝑡), and 

velocity orientations 𝜃(𝑡) across each image over the course of a video. To identify and exclude spurious 

velocities during statistical analysis, we rejected those points for which the signal-to-noise ratio was less 

than 2. We fit the speed distributions to Schulz distributions by minimizing the mean square difference 

between the predicted statistical weight assigned to each bin (of width 50 nm/s) for a given choice of 

parameters and the actual fraction of speeds in each bin. Arrows plotted in Fig 4B and Fig S4 represent the 

local velocity on a regular Cartesian grid, with arrow length proportional to speed. Visualizations at 

different video times 𝑡 are superposed, with arrow color representing 𝑡. 

Spatial Image Autocorrelation (SIA): SIA analysis is performed separately on actin and microtubule 

channels of microscope images and simulation snapshots (see below) using custom Python scripts 

(27,28,83). SIA measures the correlation in intensity 𝑔𝐼  in an image as a function of separation 𝑟 (85). That 

is, 𝑔𝐼(𝑟) = 〈𝐼(𝑟′⃗⃗⃗⃗ + 𝑟)𝐼(𝑟′⃗⃗⃗⃗ )〉𝑟′⃗⃗⃗⃗  where 𝑟′⃗⃗⃗ represents the position of each pixel within an image. We perform 

an azimuthal average to generate 𝑔𝐼(𝑟) where 𝑟 is the magnitude of 𝑟. Computationally, this autocorrelation 

function is found by taking the Fourier transform of the image, multiplying by its complex conjugate, and 

applying an inverse Fourier transform. To normalize the autocorrelation functions so that the maximum is 

1 (i.e., 𝑔𝐼(0) = 1), we subtract from each image the mean of that image and divide the image by its standard 

deviation before performing the Fourier transforms. Correlation curves shown in (i) Fig 6F,G and (ii) Fig 

6H,I, are averages across (i) 100 microscope images from 3 independent time-series and (ii) simulation 

snapshots from 3 independent runs (see below). Error bars indicate standard error.  

Computational Model: To predict motor-driven composite restructuring, we develop a minimal model that 

captures the key energetic components of our system, as fully described in the SI Methods and Table S1. 

In brief, we allow filaments to interact with neighboring filaments via (i) motor-generated forces that can 

either pull the interacting filaments towards each other or push them away; or (ii) crosslinks that increase 

the friction forces on the interacting filaments, as described in SI Ref 18. The movement of a filament center 

to a neighboring grid point within a small temporal time step is then a stochastic event whose probability 

can be calculated by the standard solution to the Fokker-Planck equation given by: 𝑝𝑖(𝑥 ≥ 𝑙) = 1 −
1

2
(1 +

erf (
𝑙−𝜇𝑖

𝜎𝑖√2
)), where 𝑙 is the distance to the next grid point in a particular direction, 𝜇𝑖 is the average advection 

induced displacement in that direction and 𝜎𝑖 is the diffusion-based rms 1D displacement of the filament 

along the direction to the specific grid point. The subscript 𝑖 represents a specific filament in the model. 

The movement probability of filament 𝑖 to a neighboring grid point that (i) contains filament 𝑗’s center or 

(ii) is empty is given by (i) 𝑝𝑖𝑗 =  𝑝𝑖 × 𝑝𝑗 or (ii) 𝑝𝑖𝑗 =  𝑝𝑖 × 1.  
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We implement our model on a 150 µm x 150 µm hexagonal lattice with 2.5 µm spacing, and use numerical 

values for all model parameters that are based on experimental and literature values (see SI Table S1). 

Initially, each lattice point is either empty or occupied by a microtubule center or actin filament center using 

probabilities matching the average volume fraction occupied by these elements. The movement of the 

filaments is simulated in each iteration by calculating the likelihood of each possible movement 𝑝𝑖𝑗 for all 

grid points 𝑖 containing filament centers, and randomly picking one of these movements to occur based on 

these probabilities (Fig S8) (87). We perform three independent simulation runs for each composite 

formulation (SI Fig S9). 

To quantify the degree of clustering and segregation of the different filaments, we compute the probability 

distributions of filaments that are alike, 𝑔𝐴−𝐴(𝑟) = <
𝑁𝐴(𝑟)

𝑓𝐴𝑁(𝑟)
> or  𝑔𝑀𝑇−𝑀𝑇(𝑟) = <

𝑁𝑀𝑇(𝑟)

𝑓𝑀𝑇𝑁(𝑟)
>, and unlike, 

𝑔𝐴−𝑀𝑇(𝑟) = <
𝑁𝑀𝑇(𝑟)

𝑓𝑀𝑇𝑁(𝑟)
>  or   𝑔𝑀𝑇−𝐴(𝑟) = <

𝑁𝐴(𝑟)

𝑓𝐴𝑁(𝑟)
>  a radial distance 𝑟 from a given actin filament (A) 

or microtubule (MT) (see SI Methods). In the above, 𝑁𝐴/𝑀𝑇(𝑟) is the number of actin/microtubule 

neighbors at distance 𝑟 from a specific filament, 𝑓𝐴/𝑀𝑇 is the actin/microtubule volume fraction, and 𝑁(𝑟) 

is the maximum number of neighbors possible a distance 𝑟 from the specific actin/microtubule. An increase 

in 𝑔𝐴/𝑀𝑇−𝐴/𝑀𝑇(𝑟) above 1 indicates clustering of actin/microtubules, while a decrease in 𝑔𝐴/𝑀𝑇−𝑀𝑇/𝐴(𝑟) 

below 1 indicates segregation of unlike filaments. Correlation analysis data shown in Fig 6B-E are averages 

over all filaments of the same type over three statistically independent replicates with error bars representing 

the standard error. 
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Protein Preparation: Rabbit skeletal actin monomers (Cytoskeleton, AKL99, Lot#139), biotin-actin 

monomers (Cytoskeleton, AB07, Lot#49), porcine brain tubulin dimers (Cytoskeleton, T240, Lot#121), 

biotin-tubulin dimers (Cytoskeleton, T333P, Lot#27), rhodamine-labeled tubulin dimers (Cytoskeleton, 

TL590M, Lot#31), and myosin-II (Cytoskeleton, MY02, Lot#19), are reconstituted and flash-frozen into 

single-use aliquots according to previously described protocols (1).  

Biotinylated kinesin-401 is expressed in Rosetta (DE3)pLysS competent E. coli (ThermoFisher) grown on 

selective media plates for 16-18 hours at 37°C. Fifteen colonies are added to a 5 ml starter culture of 

selective LB media and grown for 2 hours at 37°C/250rpm before adding to 400 ml of selective LB media. 

Cells are grown at 37°C/250rpm to OD 0.6-0.9 at 600 nm, then induced at 20°C/250rpm for 18 hours with 

1mM Isopropyl -D-1-thiogalactopyranoside (IPTG), and pelleted at 5,000 rpm for 10 minutes at 4°C 

before being frozen at -80°C for 1 hour. Cells are lysed in lysis binding buffer (50 mM PIPES, 4 mM MgCl2, 

20 mM imidazole, 10 mM β-mercaptoethanol, 50 μM ATP, one protease inhibitor tablet per 10 ml, 

1.1mg/ml PMSF, 1.1mg/ml lysozyme) via sonication for 3 mins, pulsing every 20 seconds, then pelleted 

for 30 mins at 40,000 x g at 4°C, filtered through a 0.22 uM filter, and incubated with 1 ml nickel (Ni-NTA) 

agarose beads (Qiagen) for 2 hours on a rocker at 4°C. The lysate/bead mixture is passed through a 

chromatography column then washed with 15 ml buffer (50mM PIPES, 4mM MgCl2, 20mM imidazole, 

10 mM β-mercaptoethanol, 50 μM ATP, one protease inhibitor tablet per 10ml) before 1 mL fractions are 

eluted in (50 mM PIPES, 4 mM MgCl2, 20 mM imidazole, 10mM β-mercaptoethanol, 50 μM ATP, one 

protease inhibitor tablet per 10 ml, 2 mM DTT, 0.05 mM ATP). An elution dot blot is performed to assess 

the most concentrated fraction which is run through a 40K MWCO desalting column for buffer exchange 

with PEM-100 with 0.1mM ATP, then mixed with 60% sucrose for a final concentration of 10% sucrose 

before being aliquoted and flash-frozen into single-use aliquots. 

For composites that incorporate actin or microtubule crosslinking, actin-actin or microtubule-microtubule 

crosslinker complexes are prepared according to previously described protocols (2). In brief, biotin-actin 

or biotin-tubulin is combined with NeutrAvidin and free biotin at a ratio of 2:2:1 protein:free 

biotin:NeutrAvidin. 

Immediately prior to experiments: myosin-II is purified as previously described (1) and stored at 4°C, and 

kinesin clusters are formed by incubating the dimers at a 2:1 ratio with NeutrAvidin (ThermoFisher) with 

4 µM DTT for 30 minutes at 4°C.  

 

Active Cytoskeleton Composite Preparation: Actin-microtubule composites are formed by polymerizing 

2.32 μM unlabeled actin monomers and 3.48 μM tubulin dimers (5% rhodamine-labeled) in PEM-100 (100 

mM PIPES, 2 mM MgCl2, 2 mM EGTA) supplemented with 0.1% Tween, 10 mM ATP, 4 mM GTP, 5 μM 

Taxol, and 0.47 μM AlexaFluor488-phalloidin (Life Technologies, A12379) to label the actin.  

For crosslinked composites, a portion of either the actin monomers or the tubulin dimers is replaced with 

equivalent crosslinker complexes to achieve the same overall actin and tubulin concentrations and 

crosslinker:protein ratios of 𝑅𝐴 = 0.02 for actin or 𝑅𝑀𝑇  = 0.005 for microtubules. 𝑅𝐴 and 𝑅𝑀𝑇  values are 

chosen to achieve similar lengths between crosslinkers 𝑑 along actin filaments and microtubules (𝑑𝐴 ≃ 60 

nm and 𝑑𝑀𝑇 ≃ 67 nm). As previously described (2), we estimate these values using 𝑑𝐴 =
𝑙𝑚𝑜𝑛𝑜𝑚𝑒𝑟

2𝑅
, where 

𝑙𝑚𝑜𝑛𝑜𝑚𝑒𝑟  is the length of an actin monomer, and 𝑑𝑀𝑇 =
𝑙𝑟𝑖𝑛𝑔

26𝑅
 , where 𝑙𝑟𝑖𝑛𝑔 is the length of a ring of 13 

tubulin dimers. Crosslinking ratios are also tuned to be high enough to induce measurable changes in the 

viscoelastic properties compared to unlinked networks, but low enough to prevent filament bundling (2). 

Actin and tubulin concentrations are chosen to be similar to those used in previous studies on myosin-driven 

actin-microtubule composites (1, 3, 4), and such that the mesh sizes for the actin and microtubule networks 

are comparable (𝜁𝐴 ≃0.96 μm and 𝜁𝑀𝑇 ≃1.44 μm, respectively), and the effective composite mesh size is 

𝜁𝐶 ≃ (𝜁𝐴
3 + 𝜁𝑀𝑇

3 )−1/3 ≃ 0.64 μm (5). Further fine-tuning of the concentrations is achieved through a series 
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of optimization experiments to identify a formulation space in which composites reliably form percolated 

networks and are visibly active on the timescale of minutes.  

Composites are polymerized for 30 mins at 37°C, after which 1.86 μM unlabeled phalloidin is added and 

the composite is incubated for 10 mins at room temperature. 50 μM blebbistatin is added to inhibit myosin-

actin interaction prior to de-activation via 488 nm illumination (1), and an oxygen scavenging system (45 

μg/mL glucose, 0.005% β-mercaptoethanol, 43 μg/mL glucose oxidase, 7 μg/mL catalase) is added to 

reduce photobleaching. Finally, 0.47 μM myosin-II and 0.35 μM kinesin (pre-formed into complexes) are 

added. Concentrations of actin, tubulin, myosin-II and kinesin in composites are within reported 

physiological ranges of ~2.6 – 70 μM, ~1.3 – 19 μM, 0.4 – 4.8 μM, and 0.1 – 1.6 μM, respectively (6). 

While myosin activity is controlled by blebbistatin de-activation, kinesin starts to act on microtubules 

immediately, so the start of the activity time of each experiment, 𝑇𝐴 = 0, is set as the time kinesin is added. 

Each sample is gently flowed into a ~1 mm (𝑥) × 24 mm (𝑦) sample chamber composed of a silanized (7) 

coverslip and microscope slide fused together by a ~100 μm thick parafilm spacer and sealed with epoxy, 

creating an airtight chamber. We see no visible signs of sample drift from leaking or heating as our control 

systems (no motors) display no discernible bulk motion or restructuring. We do note that in cases in which 

motors induce directional motion, the motion is preferentially along the long ‘𝑦’ axis of the chamber. We 

do not expect this preferred directionality to artificially bias any other structural or dynamical features of 

the composite. 

 

Fluorescence Microscopy: Imaging of AlexaFluor488-labeled actin and rhodamine-labeled microtubules 

comprising composites is performed using a Nikon A1R laser scanning confocal microscope with a 60× 

1.4 NA oil-immersion objective (Nikon), a 488 nm laser with 488/525 nm excitation/emission filters, and 

a 561 nm laser with 565/591 nm excitation/emission filters. 488 nm illumination also locally activates 

myosin-II ATPase activity by de-activating blebbistatin as previously described (1, 3, 4). Time-series 

(videos) of 256 × 256 square-pixel (213 μm × 213 μm) images are collected at 2.65 fps for 1000 frames 

(𝑡 = 0 − 377 s ≃ 6.28 mins). Acquisition of the first video for each sample starts 5 mins after the addition 

of kinesin motors (𝑇 = 5 min) in the middle of the ~100 μm thick sample chamber. Each successive video 

is collected in a different field of view of the same sample until there is no longer any discernible 

restructuring or motion (𝑇 ≃ 45 − 120 mins). 7-15 videos, each spanning acquisition times of 𝑡 = 0 −
377 s, are collected for each of the six composite formulations (no crosslinking, actin crosslinking and 

microtubule crosslinking; with kinesin and with kinesin and myosin). 

Differential Dynamic Microscopy (DDM): DDM is performed separately on the actin and microtubule 

channels of each 1000-frame video using custom written python scripts as described previously (1, 4). 

Image structure functions are determined by taking the square of 2D Fourier transforms of differences 

between an image at time 𝑡 and one at 𝑡 + Δ𝑡. This yields the instantaneous image structure function, 

𝐷𝑖(𝑞𝑥 , 𝑞𝑦 , Δ𝑡, 𝑡𝑣) where 𝑞𝑥 and 𝑞𝑦 are 𝑥 and 𝑦 components of the wave vector 𝑞⃗. As typically done in DDM 

analysis, we average 𝐷𝑖  over all times 𝑡 (frames) of a given video, and all wave vectors 𝑞⃗ with the same 

magnitude 𝑞, to determine the 1D image structure function 𝐷(𝑞, Δ𝑡) that can be fit to various models. We 

fit 𝐷(𝑞, Δ𝑡) versus Δ𝑡 for each wave vector 𝑞 to the sum of either one or two Schulz speed distributions:  

𝐴 (1 − ([𝑓 (
𝜏1(𝑍1+1)

𝑍1∗Δ𝑡
∗

sin(𝑍1∗arctan (𝜃1))

(1+𝜃1
2)

𝑍1
2

)] + [(1 − 𝑓) (
𝜏2(𝑍2+1)

𝑍2∗Δ𝑡
∗

sin(𝑍2∗arctan (𝜃2))

(1+𝜃2
2)

𝑍2
2

)])) + 𝐵,  

where amplitude 𝐴, background 𝐵, decay times 𝜏1 and 𝜏2, amplitude fraction 𝑓, and Schulz numbers 𝑍1 

and 𝑍2 are 𝑞-dependent free parameters, and 𝜃𝑛 =
Δ𝑡

𝜏𝑛(𝑍𝑛+1)
  (8). Schulz numbers characterize the speed 

distributions 𝑃(𝑣) =
𝑣𝑧

𝑍!
(

𝑍+1

𝑣̅
)

𝑍+1
exp [−

𝑣(𝑍+1)

𝑣̅
] where 𝑍 = (

𝑣̅

𝜎
)

2
− 1. We use the functional form of 

𝐷(𝑞, Δ𝑡) and the corresponding Schulz distribution fits to divide our data into three dynamical classes: 
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Slow, Fast and Multimode. Slow data as those with 𝐷(𝑞, Δ𝑡) curves that exhibit a single flat decorrelation 

plateau and are well-fit to a single Schulz distribution (i.e., 𝑓 = 1). Fast data are classified by 

𝐷(𝑞, Δ𝑡) curves that are also well-fit to a single Schulz distribution, but have decorrelation plateaus that 

exhibit pronounced Δ𝑡-dependent oscillations. Multimode data have 𝐷(𝑞, Δ𝑡) curves that display two 

distinct plateaus and are best fit to the sum of two Schulz distributions with comparable 𝑓 values. 𝜏(𝑞) 

curves for each composite and time 𝑇 are extracted from the corresponding 𝐷(𝑞, Δ𝑡) fits. 

For Slow and Fast data, in which one distribution describes the data, there are 4 free parameters (𝐴, 𝐵, 𝜏1, 

𝑍1). For Multimode data, this number increases to 7 (adding 𝜏2, 𝑍2, 𝑓). For each video these fits are 

performed over 40 different 𝑞 values in the range 𝑞 = 0.8 − 2 μm−1 (~3 – 8 μm), from which we extract 

𝜏(𝑞) curves for the actin and microtubule channels of each of the 7-15 statistically different videos we 

collect for each of the six composite formulations. 

Unreliable fits to the data would result in noisy 𝜏(𝑞) curves or curves that do not display power-law 

behavior over the entire 𝑞 range. On the contrary, we find that all composites for all times 𝑇 during activity 

exhibit 𝜏(𝑞)~ 𝑞−1 scaling indicative of ballistic motion from which we compute the average speed 〈𝑣〉 by 

fitting to 𝜏(𝑞) = (〈𝑣〉𝑞)−1. We determine the error associated with the measured 〈𝑣〉 using two methods. 

First, we compute 〈𝑣〉 from each individual (𝜏,𝑞) pair (i.e., 𝑣 = 1/𝜏𝑞) and determine the standard error of 

the distribution of those values. Secondly, we use the Schulz parameter 𝑍 determined from our 𝐷(𝑞, Δ𝑡) 

fits and our measured 〈𝑣〉 to compute the standard deviation 𝜎 and corresponding standard error via the 

relation 𝑍 = (
𝑣̅

𝜎
)

2
− 1. The error bar for each data point in Fig 3 represents the larger of the two standard 

error values. 

All composites exhibit 𝜏(𝑞)~ 𝑞−1 scaling indicative of ballistic motion (9) and the average speed 〈𝑣〉 is 

computed by fitting 𝜏(𝑞) to  𝜏(𝑞) = (〈𝑣〉𝑞)−1. Error bars shown in Fig 3 represent the standard error of the 

distribution of speeds computed from each individual 𝑞 value (i.e., 𝑣 = 1/𝜏𝑞) in the range over which we 

fit 𝐷(𝑞, Δ𝑡).  

To determine the degree to which dynamics deviate from radial symmetry, implying directionality, we 

compute the anisotropy factor 𝐴𝐹  of 𝐷𝑖(𝑞𝑥 , 𝑞𝑦 , Δ𝑡, 𝑡) in 𝑞-space by computing 𝐴𝐹(𝑞, ∆𝑡, 𝑡) =

∫ 𝐷(𝑞, Δ𝑡, 𝜃) cos(2𝜃) 𝑑𝜃
2𝜋

0 ∫ 𝐷(𝑞, Δ𝑡, 𝜃)𝑑𝜃
2𝜋

0
⁄  and averaging over 𝑞, ∆𝑡 and 𝑡 (10, 11). 𝜃 is defined 

relative to the positive 𝑦-axis such that 𝐴𝐹 > 0  and 𝐴𝐹 < 0  correspond to motion along the 𝑦- and 𝑥-

direction, respectively, and 𝐴𝐹 = 0 indicates isotropic motion.  

To evaluate the time-dependence of dynamics over short timescales (within the time 𝑡 of a single video), 

we also investigate the temporal distribution of instantaneous image structure functions 𝐷𝑖(𝑞𝑥 , 𝑞𝑦 , Δ𝑡, 𝑡) for 

a given 𝑞. For steady-state dynamics, one would expect this distribution to be Gaussian. Deviations from 

Gaussianity indicate sporadic events which cause larger than typical structural decorrelations. We quantify 

this non-Gaussian behavior by evaluating the skewness, 𝑆𝐾 = (〈𝐷𝑖 − 𝐷〉)3 (〈(𝐷𝑖 − 𝐷)2〉)3 2⁄⁄ , where the 

average is over Δ𝑡 and 𝑞.  

 

Particle Image Velocimetry (PIV): PIV analysis is performed using the GPU-accelerated version of Open-

PIV (12). We use interrogation windows of 8 × 8 square-pixels, with a 4 × 4 square-pixel overlap, to 

generate 64 × 64 grids of velocities for both the microtubule and actin channel of each time-series. Average 

velocities 𝑣 for each interrogation window are determined from image pairs separated by Δ𝑡 =10 frames 

(~3.77 s), with the starting frame for each successive interval overlapping with the ending frame for the 

previous interval. From the measured velocities, we determine the distribution of individual speeds 𝑣(𝑡), 

and velocity orientations 𝜃(𝑡) over the course of a video. Because of the heterogeneous spatial distribution 

of fluorescent material, the signal-to-noise ratio of estimated velocities varied appreciably. To identify and 

exclude spurious velocities during statistical analysis, we rejected those points for which the signal-to-noise 

ratio was less than 2. To fit Schulz distributions for flow speed, we first partitioned velocities into bins of 
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width 50 nm/s, computing the fraction of velocities in each bin. Schulz distribution parameters were then 

chosen by minimizing the mean square difference between the predicted statistical weight assigned to each 

bin for a given choice of parameters and the actual fraction of speeds in each bin. To visualize velocity 

fields using vector plots, we smoothed vector fields to eliminate spurious vectors in two steps. First, we 

removed vectors with unsatisfactory signal-to-noise ratios, and replaced the velocity vectors at the 

corresponding locations by local mean method, as implemented in the OpenPIV Spatial Analysis Toolbox. 

In the local mean approach, an invalid vector is iteratively replaced by the mean of all valid velocity vectors 

in a local patch centered about the site of the spurious vector. Here, we use a 3×3 averaging region. If at 

some location, no valid vectors are available at adjacent grid sites for a given iteration, a velocity field is 

not computed. The process is repeated until all spurious vectors are replaced.  Next, we removed velocities 

that had a component that was more than 2 standard deviations greater than the global mean, and replaced 

them by the local mean method described above. Arrows plotted in Fig 4B and Fig S3 represent the local 

velocity on a regular Cartesian grid, with arrow length proportional to speed. Visualizations at different 

video times 𝑡 are superposed, with arrow color representing 𝑡. 

 

Spatial Image Autocorrelation (SIA): SIA analysis is performed on the actin and microtubule channels 

separately for each frame of each video using custom Python scripts, previously validated for similar active 

systems (4, 13, 14). SIA measures the correlation in intensity 𝑔𝐼  of two pixels in an image (video frame) as 

a function of separation distance 𝑟 (13). We generate autocorrelation curves 𝑔𝐼(𝑟) by taking the fast 

Fourier transform of the image 𝐹(𝐼), multiplying by its complex conjugate, applying an inverse Fourier 

transform 𝐹−1, and normalizing by the squared intensity: 𝑔𝐼 (𝑟) =
𝐹−1(|𝐹(𝐼(𝑟))|

2
)

[𝐼(𝑟)]
2 . We radially average 𝐹(𝐼) 

to compute a single average correlation value for each lengthscale 𝑟 of a given image, independent of 

direction. We use a spatial resolution of 1 pixel (832 nm) and perform SIA over the entire 256 × 256 square-

pixel (213 μm)2 image. We also perform SIA on skeletonized versions of the same images to reduce 

potential noise from introducing artifacts. The trends we observe in skeletonized and raw images are 

statistically indistinguishable. Finally, we perform this same SIA analysis on images from simulations (see 

Figs 6, S9). Correlation curves shown in (i) Fig 6F,G and (ii) Fig 6H,I, are averages across (i) 100 

microscope images from 3 independent time-series and (ii) simulation snapshots from 3 independent runs 

(see below). Error bars indicate standard error. 

 

Computational Model: To predict the restructuring of the composites due to motor activity, we develop a 

minimal model, based on the framework described in Ref 18 and references therewithin, that captures the 

key energetic components of the composites. We define the available space as a hexagonal grid with 

periodic boundary conditions. Each grid point can be occupied by an actin or microtubule filament center 

or can be empty. The filaments can interact with neighboring filaments within reach, via 1) motor-generated 

forces that can either pull the interacting filaments towards each other or push them away from each other; 

or 2) crosslinks that increase the friction forces on the interacting filaments. The movement of a filament 

center to a neighboring grid point within a small temporal time step is then a stochastic event whose 

probability can be calculated by the standard solution to the Fokker-Planck equation given by  

𝑝𝑖𝑗(𝑥 ≥ 𝑙) = 1 −
1

2
(1 + erf (

𝑙−𝜇𝑖𝑗

𝜎𝑖√2
))       … (1), 

where 𝑙 is the distance to the next grid point j in a particular direction, 𝜇𝑖𝑗 is the average advection induced 

displacement from the current grid location in the direction from i to j, and 𝜎𝑖 is the diffusion-based root 

mean squared (rms) 1D displacement of the filament along the direction to the specific grid point. The 

subscript 𝑖 represents a specific filament in the model and j represents a neighboring grid point. The average 

advection-induced displacement along a given direction, 𝜇, is a function of time elapsed since the filament 

moves to the new grid point, and is calculated as 
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𝜇𝑖𝑗(𝑡) =  
(∑ 𝑭𝒊𝒋)∙𝜼̂𝑗≠𝑖

𝛾𝑖
∆𝑡 + 𝜇𝑖𝑗(𝑡 − ∆𝑡)     … (2),  

where 𝑭𝒊𝒋 is the force from the motors between filament 𝑖 and a same-type (actin or microtubule), 

interacting filament 𝑗, given by the force per motor (𝐹𝑚 or 𝐹𝑘  for myosin or kinesin, respectively) times 

the number of motors per filament (𝑁𝑚 or 𝑁𝑘). The direction of 𝑭𝒊𝒋 is along the line joining the two filament 

centers and can be attractive or repulsive depending on filament orientations; 𝜼̂ is the unit vector along the 

direction of motion to the neighboring grid point; and ∆𝑡 is the time-step for which the probability of motion 

is being calculated. 𝛾𝑖 is the effective friction factor, given by the sum of the viscous drag on filament 𝑖, 
(𝛾𝐴 or 𝛾𝑀𝑇 for actin or microtubule, respectively), the protein friction from all motors between interacting 

filaments of similar type (𝛾𝑚 ∗ 𝑁𝑚 ∗ 𝑁𝐴,𝑖 or 𝛾𝑘 ∗ 𝑁𝑘 ∗ 𝑁𝑀𝑇,𝑖) and the protein friction from crosslinks 

between similar type filaments (𝛾𝑋 ∗ 𝑁𝐴,𝑖 or 𝛾𝑋 ∗ 𝑁𝑀𝑇,𝑖). 𝛾𝑚 (𝛾𝑘) is the friction factor per myosin (kinesin) 

motor between two filaments, 𝑁𝐴,𝑖 (𝑁𝑀𝑇,𝑖) is the number of actin (microtubule) filaments interacting with 

the current actin (microtubule) filament, and 𝛾𝑋 is the crosslinker friction factor between each interacting 

filament of similar type. 

The diffusion based rms displacement of a filament in a specific direction is calculated using  

𝜎𝑖 = √2𝐷(𝑡𝑖 + ∆𝑡),  

𝐷 =  
𝑘𝐵Τ

𝛾𝑖
     … (3),  

Where 𝑡𝑖  is the time a filament has been in grid location i, 𝑘𝐵  is the Boltzmann constant, and Τ is the 

temperature of the system.  

The movement of a filament center to a neighboring grid point occupied by another filament center is 

restricted sterically and can be only accomplished if the two filaments exchange positions. Thus, in such a 

scenario, the cumulative movement probability of filament 𝑖 to a neighboring grid point containing filament 

𝑗’s center is given by  

𝑝𝑖𝑗,𝑐 =  𝑝𝑖𝑗 × 𝑝𝑗𝑖 = 𝑝𝑗𝑖,𝑐        … (4), which is the same for the filament at grid point j exchanging its location 

with filament at i.  

Within the same spirit, the movement of a filament from grid point 𝑖 to a neighboring grid point 𝑗 that is 

empty can by calculated as  

𝑝𝑖𝑗,𝑐 =  𝑝𝑖𝑗 × 1     … (5).  

 

We purposefully choose a minimal approach to capture the dynamics to shed light on the competing factors 

of motor activity and friction from crosslinkers. Our model assumes a single length for all filaments while 

in experiments actin and microtubules assume a distribution of lengths. We treat all filaments as rigid rods 

while actin in experiments is semiflexible with a persistence length of ~17 μm. Our simulations are in 2D 

while experimental composites span 3D. Our future work will build these additional features into our model. 

Some important justifications and derivations that underlie our modeling approach include: 

1. While crosslinkers are often thought of as springs connecting different filaments, individual crosslinker 

bonds are reversible and transiently switch between bound and unbound states. When a force is applied 

on this system, either internally via molecular motors, or via an external force (such as tension or shear), 

crosslinkers can slip along the length of the filaments as they transiently bind and unbind. The rate at 

which the filaments slip past each other (or past crosslinks on neighboring filaments) gives an estimate 

of the viscosity of the system. This slip also results in plastic deformation or yielding in the materials. 

A simplified molecular theory of viscosity, based on breaking of elastic bonds, slippage, and bond 

reformation between neighboring elements of a macroscale system, such as a crosslinked polymer 

network, is well described by Ref 18. The model relates describes the slipping rate 𝑣 as a function of 
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the force 𝐹 driving this slip by the equation 𝑣 =  𝐹/(𝑁𝑓𝑘𝑠𝜏𝑜𝑛), where 𝐹 is the driving force, 𝑁 is the 

number of crosslinkers, 𝑓 is the duty ratio (fraction of time the bonds are bound), 𝑘𝑠 is the elastic 

stiffness (spring constant) of the linker, and 𝜏𝑜𝑛 is the average bond lifetime. This simplified 

approximation provides a good estimate of viscous, irreversible, rearrangements that can occur in 

crosslinked polymer networks with reversible crosslinker binding. The term in the RHS denominator 

is a measure of the viscosity of the system or the viscous drag on individual filaments. We want to once 

again clarify that the elastic nature of crosslinks is not being ignored, just being coupled with the 

transient nature of the crosslinker bonds. If 𝜏𝑜𝑛 is really large, i.e. the crosslinker bonds are really 

strong, then 𝑣 will be really small, so there will be almost no permanent slip or plastic deformation. In 

this limit, the network will have an elastic response to external force.  

2. Under the simplified assumptions of the Ref 18 model description, when an external force is trying to 

slip two crosslinked filaments past each other, this force is instantaneously balanced by the elastic force 

developed in the crosslinkers connecting the two filaments 𝐹 = 𝑘𝑠𝑥, where 𝑥 =  𝑣𝑡 is the average 

displacement between the two filaments, 𝑣 is the slip velocity, and 𝑡 is the average elapsed time. If an 

individual crosslinker bond has a finite average lifetime of 𝜏𝑜𝑛, then the maximum force that is resisted 

by each crosslinker bond is 𝐹 = 𝑘𝑠𝑣𝜏𝑜𝑛. If 𝑁 is the total number of crosslinkers, and 𝑓 is the average 

time a crosslinker stays bound, then the force balance becomes 𝐹 = 𝑁𝑓𝑘𝑠𝑣𝜏𝑜𝑛. Under the simplified 

assumption that both 𝑓 and 𝜏𝑜𝑛 are constant, the resistive force is then proportional to the sliding 

velocity and the rest of the terms on the RHS can be treated as an effective drag on the filaments. While 

this assumption is indeed simplistic, as 𝑓 and 𝜏𝑜𝑛 will change based on the force applied, in the regime 

we are considering, where the external forces per crosslinker are smaller than the characteristic 

dissociation force of the crosslinker bond, this assumption holds. The application of this force-velocity 

relationship has been used effectively to describe filament sliding and force generation characteristics 

of actin-myosin and microtubule-kinesin systems, as reviewed in Ref 18 and references therewithin. 

3. We estimate the drag coefficient of individual myosin on actin and kinesin on microtubules from the 

RHS of the force equation 𝐹 = 𝑁𝑓𝑘𝑠𝑣𝜏𝑜𝑛. 𝑁 is the number of myosins or kinesins interacting between 

actin and microtubule filaments, which is 1 for the drag from individual motors, but is included in the 

calculation of the total effective drag (see explanation for equation 2). 𝑓 is calculated as 𝑘𝑜𝑛/(𝑘𝑜𝑛 +
𝑘𝑜𝑓𝑓) where 𝑘𝑜𝑛 and 𝑘𝑜𝑓𝑓 are the binding and unbinding rates of molecular motors with their respective 

filaments. Using the rates given in Ref 15 for skeletal muscle, the motor protein stiffness of 4 pN/nm 

based on estimates from Ref 18, and using 𝑘𝑜𝑓𝑓
−1 = 𝜏𝑜𝑛 , we estimate the drag per myosin on actin as 

~0.2 pN.ms/nm. The value given for the drag coefficient in Ref 15 for actin sliding due to myosin 

activity is 0.4 pN.ms/nm. Both values are much higher than the fluid drag on the filament, as reported 

in Ref 17. Also, since they only balance the active force generation by attached myosin motors and any 

external force on the filament with this drag force, the drag coefficient should include the passive effects 

of bound motors, which are a combination of molecular friction as described above and fluid drag. A 

value in the range of 0.2-0.4 pN.ms/nm for myosin drag on actin is in line with a 2 pN force from single 

myosin motors moving actin filaments at speeds of ~5-10 μm/s. Similarly, drag coefficients for kinesin 

motors are calculated from duty ratio and off rates given in Ref 18 giving a value ~6 pN.ms/nm, which 

can be compared to the 5 pN force generated per motor and ~0.8 μm/s microtubule sliding speeds. 

 

We implement our model on a 155 µm x 155 µm 2D space with a hexagonal lattice, where the lattice 

spacing is 2.5 µm. Initially, each lattice point is either occupied with a microtubule filament center, an actin 

filament center or is left empty using probabilities matching the average volume fraction occupied by these 

elements. The movement of the filaments is simulated in each iteration by calculating the likelihood of each 

possible movement, 𝑝𝑖𝑗,𝑐 for all grid points 𝑖 and j, where at least one of them contains a filament center, 

and randomly picking one of these movements to occur based on these probabilities. Since each movement 

occurs over a timescale of ∆𝑡, the effective time progression per movement can be approximated by 



 

8 

 

2∆𝑡

∑ 𝑝𝑖𝑗𝑖,𝑗
 (𝑖 ≠ 𝑗, at least 𝑖 or 𝑗 are occupied by a filament center) at each iteration step. We take the value of 

∆𝑡 as 0.1 s, at the start, such that both the rms displacement due to diffusion and the average advection 

distance due to motor driven forces are both smaller than the grid size, but dynamically adjust the ∆𝑡 at the 

next iteration step to match the effective time progression from the previous iteration step. The simulation 

is run for 𝑇𝑆 = 106 iterations, which we find is sufficient to reach quasi-steady state. Specifically, running 

the simulation for 0.5𝑇𝑆 , 0.8𝑇𝑆 , 𝑇𝑆, and 1.2𝑇𝑆  iterations, we observe insignificant change in the filament 

distributions for ≥ 0.8𝑇𝑆.  The model calculations and simulations are coded in python and the scripts are 

available on GitHUB (https://github.com/compactmatterlab/active-filament-networks). A cartoon 

depiction of the model is shown in Fig S8 and numerical values for all model parameters are included in 

Table S1. We perform three independent simulation runs for each composite formulation for error analysis 

(see Fig S10). 

To quantify the degree of clustering and segregation of the different filaments, we compute the probability 

distributions of like (𝑔𝐴−𝐴(𝑟), 𝑔𝑀𝑇−𝑀𝑇(𝑟)) and unlike (𝑔𝐴−𝑀𝑇(𝑟), 𝑔𝐴−𝑀𝑇(𝑟)) filaments a radial distance 

𝑟 from a given actin filament (A) or microtubule (MT) as: 

𝑔𝐴−𝐴(𝑟) = <
𝑁𝐴(𝑟)

𝑓𝐴𝑁(𝑟)
>  and 𝑔𝑀𝑇−𝑀𝑇(𝑟) = <

𝑁𝑀𝑇(𝑟)

𝑓𝑀𝑇 𝑁(𝑟)
>  for like filaments, and  

  𝑔𝐴−𝑀𝑇(𝑟) = <
𝑁𝑀𝑇(𝑟)

𝑓𝑀𝑇𝑁(𝑟)
>  and 𝑔𝑀𝑇−𝐴(𝑟) = <

𝑁𝐴(𝑟)

𝑓𝐴𝑁(𝑟)
> for unlike filaments. 

In the above, 𝑁𝐴/𝑀𝑇(𝑟) is the number of actin/microtubule neighbors at distance 𝑟 from a specific filament, 

𝑓𝐴/𝑀𝑇 is the volume fraction of actin/microtubules in the simulation space, and 𝑁(𝑟) is the maximum 

number of possible neighbors a distance 𝑟 from the specific actin/microtubule filament. An increase in 

𝑔𝐴/𝑀𝑇−𝐴/𝑀𝑇(𝑟) above 1 indicates clustering of actin/microtubules, while a decrease in 𝑔𝐴/𝑀𝑇−𝑀𝑇/𝐴(𝑟) 

below 1 indicates segregation of actin/microtubules from microtubules/actin. We perform correlation 

analysis up to 𝑟 = 15 μm which we found sufficient to capture most of the correlation decay with 𝑟. Large 

radial distances display periodicity due to the periodic boundary conditions incorporated into the model. 

Spatial analysis algorithms also exclude filaments located at the maximum radial analysis distance or less 

from the simulation boundaries, to prevent the boundaries from skewing the results. Correlation analysis 

data shown in Fig 6 are averages over all filaments across three statistically independent replicates with 

error bars representing the standard error. 

  

https://github.com/compactmatterlab/active-filament-networks
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 Description Value Reference 

Total Grid Size  150 μm x 150 μm  

% actin filaments % of 2D space taken up by actin filament 40% experimental 

% microtubules (MT) % of 2D space taken up by MTs 15% experimental 

Grid spacing (𝒍)  2.5 μm  

Filament length Length of each actin filaments and MT 5 μm experimental 

𝑭𝒎 Force generated per myosin motor 3 pN (15) 

𝑭𝒌 Force generated per kinesin motor 6 pN (16) 

𝑵𝒎 Number of myosin motors per actin-actin interaction 10 experimental 

𝑵𝒌 Number of kinesin motors per actin-actin interaction 5 experimental 

∆𝒕 Time increment 100 ms  

𝜸𝑨 Viscous drag on an actin filament 0.005 pN∙ms/nm (17) 

𝜸𝑴𝑻 Viscous drag on a microtubule filament 0.01 pN∙ms/nm (18) 

𝜸𝒎 
Viscous drag on the filament due to single myosin 

motor binding 
0.3 pN∙ms/nm (15) 

𝜸𝒌 
Viscous drag on the filament due to single kinesin 

motor binding 
6 pN∙ms/nm (18) 

𝜸𝑿 
Viscous drag on the filament due to single cross-

linker binding 
10 pN∙ms/nm 

lower-bound 

(19) 

𝚻 Temperature of the system 290 K  

Table S1: Parameters used in mathematical model and simulations. Specific numerical values of 

parameters are chosen to match experimental conditions, including the concentrations of actin, 

microtubules, motors and crosslinkers. Values for motor forces and viscous drag terms are based on 

literature values as specified in the table. 

 

 

Table S2. Comparison of average speeds 〈𝒗〉 and corresponding standard deviations 𝝈 measured with 

PIV and DDM. Average speed 〈𝑣〉 and corresponding standard deviation 𝜎 for actin and microtubule 

channels of the videos shown in part A of Movies S1-S3, measured by fitting: (left) PIV speed distributions 

to one (purple, orange) or two (magenta) Schulz distributions, or (right) DDM 𝐷(𝑞, Δ𝑡) curves to functions 

that use one (purple, orange) or two (magenta) Schulz speed distributions. Note that all speeds are 

statistically indistinguishable between the two measurement techniques.  

Class Channel 

<v> s <v> s

microtubule 0.48 0.33 0.27 0.07
actin 0.23 0.17 0.33 0.09

microtubule 1.49 0.18 1.91 0.24
actin 1.60 0.21 1.77 0.23

microtubule - v1 0.75 0.23 0.82 0.19
actin - v1 0.80 0.16 0.80 0.18

microtubule - v2 0.19 0.12 0.17 0.01
actin - v2 0.30 0.19 0.18 0.01

Multimode

Method
PIV DDM 

Slow

Fast
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Movies: 

Movie S1: Sample time-series of active actin-microtubule composite exhibiting Slow dynamics. (A) 

The example time-series used to demonstrate Slow dynamics of actin filaments (green) and microtubules 

(red) in Figs 2A, 3 and 4A, and (B-D) three additional time-series showing Slow dynamics.  

 

Movie S2: Sample time-series of active actin-microtubule composite exhibiting Fast dynamics. (A) 

The example time-series used to demonstrate Fast dynamics of actin filaments (green) and microtubules 

(red) in Figs 2A, 3 and 4A, and (B-D) three additional time-series showing Fast dynamics.  

 

Movie S3: Sample time-series of active actin-microtubule composite exhibiting Multimode dynamics. 

(A) The example time-series used to demonstrate Multimode dynamics of actin filaments (green) and 

microtubules (red) in Figs 2A, 3 and 4A, and (B-D) three additional time-series showing Multimode 

dynamics. 
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Figure S1: Cartoon of phase space of different composite formulations. (A) We co-polymerize actin 

monomers (2.32 µM) and tubulin dimers (3.48 µM) to form co-entangled composite networks of actin 

filaments (green) and microtubules (red). Static crosslinking is achieved using NeutrAvidin to link 

biotinylated actin filaments (Actin XL) or microtubules (MT XL). The crosslinker to protein molar ratio 𝑅 

is fixed at 𝑅 = 0.02 for actin and 𝑅 = 0.005 for microtubules to achieve similar distances 𝑑 between 

crosslinks along the filaments. We incorporate kinesin clusters (orange) and myosin-II minifilaments 

(purple) as strain-generating motors to drive the composites out of steady-state. B. Cartoon of composite 

formulation space. We incorporate 0.35 µM kinesin (K) into composites with no static crosslinkers (No 

XL, dark blue box), actin-actin crosslinks (Actin XL, dark green box) and microtubule-microtubule 

crosslinks (MT XL, dark red box). For each kinesin-driven composite, we also examine the effect of adding 

0.47 µM myosin (K+M) into composites with no static crosslinkers (No XL, light blue box), actin-actin 

crosslinks (Actin XL, light green box) and microtubule-microtubule crosslinks (MT XL, light red box). 
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Figure S2: Two-dimensional and azimuthally-averaged DDM image structure functions for 9 

additional time-series with Slow, Fast, and Multimode behavior. A. Two-dimensional image structure 

functions 𝐷(𝑞𝑥 , 𝑞𝑦 , Δ𝑡) computed for Δ𝑡 = 3 s and Δ𝑡 = 20 s for three representative time-series that 

display Slow (top rows, purple), Fast (middle rows, orange), and Multimode (bottom rows, magenta) 

characteristics. Colorscale is normalized separately for each image, and indicates the normalized value of 

each image structure function [𝐷(𝑞𝑥 , 𝑞𝑦 , Δ𝑡)/𝐷𝑚𝑎𝑥], with low (blue) and high (red) values indicative of 

lower or higher correlations. B. Azimuthally-averaged image structure functions 𝐷(𝑞, Δ𝑡) versus lag time 

Δ𝑡 computed from 𝐷(𝑞𝑥 , 𝑞𝑦 , Δ𝑡) functions shown in (A) for microtubule (closed symbols) and actin (open 

symbols) channels evaluated at 𝑞 = 1.33 μm−1. 
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Figure S3: Temporal color maps for 9 additional time-series with Slow, Fast, and Multimode 

dynamics. Temporal color maps generated from the microtubule (top rows) and actin (bottom rows) 

channels of the nine different time-series analyzed in Fig S2, divided into Slow (top), Fast (middle), and 

Multimode (bottom) classes based on distinct 𝐷(𝑞, Δ𝑡) features shown in Fig 2A. Temporal color maps 

which colorize the features in each frame according to the time 𝑡 the frame is captured during the video, as 

indicated by the colorscale (𝑡𝑖 = 0 min (red) to 𝑡𝑓 = 6.28 min (purple)), depict the motion of the 

composites. The color outlining each map denotes the composite formulation according to the legend. Each 

256 × 256 square-pixel image is 213 μm × 213 μm. The videos from which maps are generated are parts 

B-D of Movies S1-S3.  
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Figure S4: PIV vector fields for 9 additional time-series with Slow, Fast, and Multimode dynamics. 

PIV velocity vector fields for the microtubule (left) and actin (right) channels of parts B-D of Movies S1-

S3 display Slow (top, purple, Movie S1), Fast (middle, orange, Movie S2), and Multimode (bottom, 

magenta, Movie S3) characteristics. Each arrow represents the average velocity vector for an 8 × 8 square-

pixel region for 𝑡 = 0 s (red), 125 s (yellow), 251 s (green) and 377 s (purple) as shown by the time-color 

scale. All vector fields are 213 µm × 213 µm and insets are zoom-ins of 25 µm × 25 µm square regions as 

indicated in the top-left field.  
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Figure S5: Fits of 9 additional Slow, Fast, and Multimode speed distributions to Schulz functions. 

Probability distributions of speeds determined from PIV for microtubules (filled) and actin (open) for the 9 

Slow (top), Fast (middle) and Multimode (bottom) time-series analyzed in Fig S4 (B-D of Movies S1-S3). 

Dashed lines are fits to one or two Schulz distributions: 𝑃(𝑣) =
𝑣𝑧

𝑍!
(

𝑍+1

𝑣̅
)

𝑍+1
exp [−

𝑣(𝑍+1)

𝑣̅
] where 𝑍 =

(
𝑣̅

𝜎
)

2
− 1 and 𝑣̅ and 𝜎 are the average and standard deviation of the speed distribution. 𝑣̅ and 𝜎 determined 

from each fit are listed in units of µm/s. Multimode distributions are best fit to a sum of two distributions 

with different 𝑣̅ and 𝜎 values (denoted by subscripts 1 and 2). Some Fast distributions are also better fit to 

a sum of two Schulz distributions, but the second distribution is weighted significantly less than the first 

distribution. 
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Figure S6: Short-time course of average filament speeds and orientations for 9 additional time-series 

with Slow, Fast, and Multimode dynamics. (Top) Average speed 𝑣̅(𝑡) versus time 𝑡 measured via PIV 

for the MT (left) and actin (right) channels of the 9 representative Slow (purple), Fast (orange) and 

Multimode (magenta) videos analyzed in Fig S4 (B-D of Movies S1-S3). 𝑣̅(𝑡) for each time 𝑡 is an average 

over all vector magnitudes in the PIV flow field associated with time 𝑡. (Bottom) Average velocity 

orientations 𝜃̅(𝑡) versus 𝑡 computed from the same vector fields following the same method as for 𝑣̅(𝑡). 
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Figure S7: Stacked 3-dimensional confidence ellipse plots show the relationships between average 

speed 〈𝒗〉 (brown axes), anisotropy factor |𝑨𝑭| (teal axes), and skewness 𝑺𝑲 (gold axes) for different 

composite formulations. Data points correspond to the 106 data points plotted in Fig 5, with colors and 

symbols indicating the composite formulation and dynamic class, respectively, according to the legends. 

The ellipses enclose one standard deviation around the mean. Panels with darker shaded (A,C,E) and lighter 

shaded (B,D,F) ellipses display data for composites with kinesin (K) and both kinesin and myosin (K+M), 

respectively.   
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Figure S8: Sample plot showing simulation mechanics. The actin filaments and microtubules exist on a 

lattice of grid points. There is a drag (𝛾𝑓𝑖𝑙𝑎𝑚𝑒𝑛𝑡) associated with their movement. Motor proteins exert 

forces which drive movement of the filaments (𝐹𝑚𝑜𝑡𝑜𝑟) but also exert drag (𝛾𝑚𝑜𝑡𝑜𝑟). Crosslinking agents 

inhibit movement by exerting drag on their respective filaments (𝛾𝑐𝑟𝑜𝑠𝑠𝑙𝑖𝑛𝑘). 

 

m 


m
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Figure S9: Simulation snapshots for three independent trials for each composite formulation. For 

each of the six composite formulations we investigate (indicated by the color-coded borders and labels) we 

simulate three independent iterations of the model. Correlation analysis data for each formulation (see SI 

Methods and Fig 6) are the corresponding average and standard error across the three trials. Color-coded 

borders enclose each formulation with lighter (right) and darker (left) shades denoting composites with and 

without myosin, respectively. For each formulation, the 6 images correspond to the initial (top row) and 

final (bottom row) states of the three independent runs (columns 1-3). All images show actin (green) and 

microtubules (red) comprising a 150 m x 150 m grid. 
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