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Subtle changes in crosslinking drive diverse
anomalous transport characteristics in
actin–microtubule networks†

S. J. Anderson, J. Garamella, S. Adalbert, R. J. McGorty ‡ and
R. M. Robertson-Anderson *‡

Anomalous diffusion in crowded and complex environments is widely studied due to its importance in

intracellular transport, fluid rheology and materials engineering. Specifically, diffusion through the

cytoskeleton, a network comprised of semiflexible actin filaments and rigid microtubules that interact

both sterically and via crosslinking, plays a principal role in viral infection, vesicle transport and targeted

drug delivery. Here, we elucidate the impact of crosslinking on particle diffusion in composites of actin

and microtubules with actin–actin, microtubule–microtubule and actin–microtubule crosslinking. We

analyze a suite of transport metrics by coupling single-particle tracking and differential dynamic

microscopy. Using these complementary techniques, we find that particles display non-Gaussian and

non-ergodic subdiffusion that is markedly enhanced by cytoskeletal crosslinking, which we attribute to

suppressed microtubule mobility. However, the extent to which transport deviates from normal

Brownian diffusion depends strongly on the crosslinking motif – with actin–microtubule crosslinking

inducing the most pronounced anomalous characteristics. Our results reveal that subtle changes to

actin–microtubule interactions can have complex impacts on particle diffusion in cytoskeleton composites,

and suggest that a combination of reduced filament mobility and more variance in actin mobilities leads to

more strongly anomalous particle transport.

Introduction

The cytoskeleton is a complex network of filamentous proteins,
including semiflexible actin filaments and rigid microtubules.1–3

Numerous crosslinking proteins that can link actin to actin,4–7

microtubules to microtubules,8–10 and actin to microtubules11–15

enable the cytoskeleton to adopt diverse architectures and
stiffnesses to drive key processes such as cell motility,
meiosis and apoptosis.10,16–20 These varying structural and
rheological properties, in turn, directly impact the intracellular
transport of vesicles and macromolecules traversing the
cytoplasm.14,15,21–23 More generally, thermal transport of
particles in biomimetic, cell-like and crowded environments
continues to be intensely investigated due to the intriguing
anomalous properties, i.e. properties not found in normal
Brownian motion,14,15,21,22,24–27 that have been reported in
these systems.

Single-particle tracking (SPT), often used to characterize
particle diffusion in complex environments, can determine
anomalous transport characteristics such as: subdiffusion, in
which the mean-squared displacement (MSD) scales as BDta

where a o 1;26,28–31 ergodicity-breaking, in which the time-
averaged MSD differs from the ensemble-averaged MSD;32–34

and non-Gaussianity, in which the distribution of particle
displacements deviates from the normal distribution consistent
with Brownian motion.35–40 While single-particle tracking,
measures the motion of individual particles to determine
transport properties, differential dynamic microscopy (DDM)
extracts complementary information by probing density fluctuations
in Fourier space. Anomalous transport dynamics manifest in DDM
measurements in the form of intermediate scattering functions
(ISF) fit by stretched exponentials41–43 or ISFs that do not decay to
zero, but have a non-zero plateau43–45 – hallmarks of heterogeneity
and non-ergodicity, respectively. Here, we use SPT and DDM on
similarly acquired images, and because SPT and DDM rely on
separate assumptions and user-defined inputs we can take the fact
that both techniques reveal similar anomalous transport trends as
an indicator of the robustness of our results.

We previously showed that varying the relative concentrations
of actin and microtubules in entangled actin–microtubule
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composites (without crosslinkers) led to surprising and complex
effects on particle transport in these networks.15 Namely, as the
ratio of actin to microtubules increased, transport became more
subdiffusive, less ergodic and exhibited more pronounced non-
Gaussianity. We attribute these results to the smaller mesh size
of actin-rich networks compared to microtubule-rich networks.
However, the B100-fold higher rigidity of microtubules
compared to actin filaments also affected the dynamics, leading
to non-monotonic dependences of multiple transport metrics
with respect to the ratio of actin to microtubules. These intriguing
results beg the question as to the role that filament crosslinking,
which directly impacts network rigidity and connectivity, plays on
the transport of particles through cytoskeleton composites.

Here, we couple single-particle tracking (SPT) with differential
dynamic microscopy (DDM) to elucidate the anomalous transport
of microspheres through crosslinked cytoskeleton composites
over a broad spatiotemporal range. To systematically determine
the role of crosslinking on particle transport, we examine co-
entangled actin–microtubule composites in which we fix the
concentration of actin, microtubules and crosslinkers and vary
the type of crosslinking to include actin crosslinked to actin (A–A),
microtubules crosslinked to microtubules (M–M), actin cross-
linked to microtubules (A–M), both actin crosslinked to actin
and microtubules crosslinked to microtubules (A–A/M–M), and
compare to networks without crosslinking (none) (Fig. 1).

We previously examined the transport of linear and ring
DNA through similar crosslinked cytoskeleton composites, and
found that both DNA types exhibited anomalous diffusion
arising from threading of ring DNA by cytoskeleton filaments
and caging and hopping of linear DNA.14,46 However, due to
the complexity of these studies, it was difficult to parse the
contributions from the DNA itself versus the cytoskeleton
matrix to the transport properties, and the generality of the
results to other particles. This difficulty was a primary motivator
for the current study. Further, in the previous DNA transport
studies we only measured transport to 7 s – over an order of
magnitude shorter than done here – and we did not evaluate
important transport metrics such as the stretching exponent,
non-ergodicity parameter from DDM, or the single-particle
trajectories.

We also previously examined the nonlinear microrheological
response of similar crosslinked cytoskeleton composites.47 The
mesoscale lengthscale of measurements as well as the far-from-
equilibrium regime examined in ref. 47 is quite different from
the regime investigated here. While we qualitatively examined
the mobilities of the filaments themselves, the results of which
have proved important to the results we present here within,
we did not investigate particle transport or quantify near-
equilibrium dynamics.

Here, we find that transport in all networks is subdiffusive,
non-Gaussian and non-ergodic – as measured by both SPT and
DDM. Further, crosslinking appreciably enhances subdiffusion,
ergodicity-breaking and non-Gaussianity compared to unlinked
networks. However, the degree to which each parameter is
enhanced depends on the crosslinking motif, with networks
with actin–microtubule crosslinking (A–M) inducing the

strongest anomalous transport features and networks with
actin–actin and microtubule–microtubule crosslinking (A–A/
M–M) inducing the weakest. These findings dovetail with our
previous work, wherein we show that the type of crosslinking
causes surprising and distinct changes to actin and microtubule
mobility.14,46–48 Taken collectively, our results indicate that the
effect of crosslinking on transport is dictated by the suppression
of microtubule mobility, whereas the relative impact of the
crosslinking type on transport is modulated by actin mobility.

Fig. 1 Experimental approach to examine the impact of crosslinking on
anomalous transport in cytoskeleton networks. (A) Schematic of the
different crosslinking motifs created in actin–microtubule networks: no
crosslinkers (none), actin crosslinked to actin (A–A), microtubules
crosslinked to microtubules (M–M), both actin–actin and microtubule–
microtubule crosslinking (A–A/M–M), and actin crosslinked to
microtubules (A–M). Biotinylated actin filaments and/or microtubules are
crosslinked with NeutrAvidin to achieve the different motifs. (B) Videos of
diffusing 1 mm fluorescent microspheres are collected and analyzed using
single-particle tracking (SPT) (C) and differential dynamic microscopy
(DDM) (D). (C) For SPT, the mean squared displacement (MSD) is plotted
versus lag time (Dt) and fit to the power-law function MSD p (t)a that
describes anomalous diffusion. (D) For DDM, intermediate scattering

functions are generated and fit to f ðq;DtÞ ¼ ð1� CðqÞÞ exp � Dt
tðqÞ

� �gðqÞ
" #

þ

CðqÞ to extract the decay times t(q), stretching exponents g(q), and non-
ergodicity parameters C(q) for each condition. Data shown in (C) and (D)
are for particles diffusing in the network without crosslinking (none).
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Results

We characterize the thermal transport of microscopic particles
diffusing in cytoskeletal composites composed of co-entangled
actin (A) and microtubules (M) with varying crosslinking
motifs. We create composites with four different crosslinking
motifs (A–A, M–M, A–M, A–A/M–M), as well as no crosslinking
(none), utilizing single-particle tracking and differential dynamic
microscopy to characterize the transport of microspheres
diffusing in the various composites (Fig. 1).

In Fig. 2A, we plot the mean-squared displacement as a
function of lag time for particles diffusing in all five types of
networks. As shown, all composites, with and without cross-
linking, display anomalous subdiffusion, i.e. MSD B Dta where
ao 1. However, all crosslinked networks are significantly more
subdiffusive than the purely entangled case, especially at
greater lag times. Further, in the crosslinked networks, the
transport becomes more subdiffusive with increasing lag time,
while in the unlinked network the degree of subdiffusion, as
measured by a, is relatively constant. This effect is more readily
shown by plotting the MSDs scaled by lag time (MSD/Dt) versus
the lag time for each of the five composites (Fig. 2B). The solid
lines in Fig. 2B act as a guide for a� 1 scaling, which is negative
for subdiffusion.

Due to the temporally variant characteristic of the subdiffusion
for crosslinked networks, we fit the MSDs with power law
functions (MSD B Dta) over two distinct time regimes: 0.2–3 s
and 3–100 s (Fig. 2C). We chose 3 s to demarcate the two regimes
as it is the shortest time after which there is no detectable change
in power-law scaling for all network types. We note that for the
time regime below 3 s there is not a single power-law behavior for
some of the data, so the exponent we show in Fig. 2C should be
considered a lower limit. For both time regimes, the non-linked
composite exhibits a significantly higher scaling exponent than
the crosslinked networks. Additionally, by quantifying the scaling
exponent, it becomes clear that the non-homologous crosslinked
network, in which actin and microtubules are crosslinked to each
other (A–M), is the most subdiffusive over the entire spatio-
temporal range. Conversely, the network in which both filaments
are homologously crosslinked (A–A/M–M) appears to be the least
subdiffusive, with scaling exponents that are higher than for
networks in which only one filament type is crosslinked (A–A
and M–M). We note that for all networks, the molar ratio of
crosslinkers to protein is held fixed. This is a critical detail, as it
results in the actin and microtubules having twice as many
crosslinkers per unit length in the A–A and M–M networks,
respectively, as in the A–A/M–M network in which the crosslinkers
are distributed among both filament types. However, this is not to
say that we expect that doubling the number of crosslinkers in the
A–A/M–M network would lead to transport properties similar to
the A–A or M–M network. We previously observed such a
network to display much more elastic properties than any of the
composites studied here, and found that the corresponding fila-
ment mobilities were also much slower.47 We would expect both of
these properties to cause more anomalous transport characteris-
tics relative to the A–A or M–M composites studied here.

To examine potential mechanisms that give rise to the
anomalous subdiffusion shown in Fig. 2, we evaluate
the probability distributions of particle displacements, i.e. the
van Hove distributions G(Dx,Dt), measured from SPT. Fig. 3
shows van Hove distributions for a range of lag times from 0.3 s

Fig. 2 Crosslinking of cytoskeleton networks leads to multi-phase parti-
cle transport with more subdiffusive behavior at long times. (A) Mean-
squared displacement (MSD) plotted as a function of lag time (Dt) for each
condition specified in the legend. (B) MSD scaled by lag time (MSD/Dt)
versus lag time (Dt) for each condition. Pink and black lines are power-laws
with scaling exponents (1 � a) determined from fits to the A–M and none
curves, respectively, for Dt = 0.2–3 s and Dt = 3–100 s. Steeper negative
slopes indicate more subdiffusive transport. (C) Anomalous scaling expo-
nents a from power-law fits of the MSDs. Open squares show the initial
fitting region (0.2–3 s) and closed squares represent the long-time
(3–100 s) fits. Error bars are the standard error calculated from six random
subsets of data for each condition.
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to 100 s for each network type. For reference, displacement
distributions for particles undergoing normal Brownian
motion are expected to be Gaussian.40 However, as shown in
Fig. 3, the distributions for all networks are distinctly non-
Gaussian, with significant broad tails for large displacements.
This phenomenon is commonly seen in crowded media in both
synthetic and biological systems, and is a hallmark of dynamic
heterogeneity.36–40,49,50 However, in these systems, non-
Gaussian transport is often transient and reverts to Gaussian
at long enough times.51–53 Conversely, we note the absence of a
crossover to Gaussian transport in our systems at long lag times
(100 s), suggesting that the dynamical processes governing
transport in these networks have relaxation times longer than
our measurement timescale.

We and others have previously found that non-Gaussian
distributions in similar crowded and confined networks could
be well-described by a sum of a Gaussian and exponential

where the exponential, GexpðDx;DtÞ / e
� jDxjlðDtÞ

� �
, describes the

large displacement tails.14,24,54 The decay length l(Dt), is there-
fore best understood as the mean of length scales associated
with the various relaxation processes that contribute to the
exponential tails in the distributions. Moreover, this characteristic
length has been shown to exhibit a power-law dependence on lag
time with exponents of B1/4–1/3.14,55 To ascertain whether or not
this decay length is sensitive to crosslinking motif, we plot l(Dt)

against lag time and fit these curves to a power law, l B DtO

(Fig. 3B). This decay length scales as a power law for all networks,
though in the crosslinked networks the increase in the decay
length with increasing lag time is smaller (smaller scaling
exponent O). In order to quantify this scaling, we plot the scaling
exponent O for each network type (Fig. 3C), which highlights the
decreased growth of the characteristic length for the crosslinked
networks relative to the unlinked network. Further, the decay
length in the network with both filaments crosslinked (A–A/M–M)
grows faster than in the homologous (A–A, M–M) or non-
homologous (A–M) crosslinked networks (Fig. 3C). Finally, we
note that the relevant timescale when the entangled and cross-
linked networks diverge is similar to the timescale over which the
MSDs deviate from a single power law and become increasingly
subdiffusive (Fig. 2). This timescale of B3 s is quite close to the
longest relaxation timescales that we previously measured for
these crosslinked composites (B3–8 s), which we attributed to
facilitated reptation, whereby filaments undergo a combination of
curvilinear diffusion, confined by the surrounding entangled
filaments (i.e. reptation), and lateral confinement-hopping at
instances when entanglements are momentarily released via
thermal fluctuations.47 As we demonstrated in ref. 47, below
B3 s, the filaments in all networks undergo internal relaxation
modes related to hydrodynamic effects and bending. Above this
timescale, unlinked composites relax nearly all of their imposed
stress while crosslinked networks maintain varying amounts of

Fig. 3 van Hove distributions reveal non-Gaussian, heterogeneous particle transport in all networks. (A) van Hove distributions (G(Dx,Dt)) for
microspheres in composite networks without crosslinkers (none; black), with actin–actin crosslinking (A–A; green), microtubule–microtubule cross-
linking (M–M; red), actin–actin and microtubule–microtubule crosslinking (A–A/M–M; blue), and actin–microtubule crosslinking (A–M; magenta) on a
semi-log scale. Shown are the distributions for 0.3, 0.5, 1, 2, 5, 20, 50, and 100 seconds. The displacement distributions are distinctly non-Gaussian and

were fit to a sum of a Gaussian and exponential distribution, GðDx;DtÞ ¼ Ae�0:5
Dx
w

� �2
þ Be

�
jDxj
l

� �
, shown in bright green. (B) The characteristic length, l,

obtained from the exponential fits shown in (A), plotted against lag time. Points are connected with a line to guide the eye. (C) Scaling exponents, O,
obtained from fitting the curves in (B) to a power-law l(Dt) B (Dt)O.
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stress for the duration of the measurement time (minutes). This
difference between the stress relaxation of linked and unlinked
networks, due to the nearly permanent nature of biotin–
NeutrAvidin linking, is likely the phenomenon that drives the
deviation at 3 s that we observe here.

To further connect our transport properties in the long-time
regime (43 s) to the rheological properties of the composites at
these timescales, we compute the frequency-dependent elastic
and viscous moduli, G0 and G00, from the MSDs for 3–100 s
using the well-validated generalized Stokes–Einstein relation as
previously described.56–58 Fig. S1 (ESI†) shows G0 as well as the
loss tangent G00/G0 averaged over the entire frequency range.
Generally speaking, more viscoelastic, rigid networks (i.e.,
higher G0) tend to result in more anomalous transport
features,15,59 while more viscous ones (higher G00/G0) tend
towards normal diffusion. Our results align with this expectation,
with all crosslinked composites exhibiting higher hG0i and lower
hG00/G0i than the unlinked composite and the variations among
crosslinked composites tracking with our results described above.

To further investigate the network-dependent anomalous
transport, we complement our SPT measurements with differential
dynamic microscopy (DDM) analysis that we perform on the same
samples we use for SPT. Specifically, we analyze the decay time, t,
of density fluctuations of an ensemble of particles across a range of
spatial frequencies, q. As described in Methods, we fit the
intermediate scattering function f (q,t) to a stretched exponential
while also taking into consideration the non-ergodicity of the
sample in order to extract dynamical information about the
network. The stretching exponents (g) we extract indicate the extent
to which diffusion is anomalous. As seen in Fig. 4, we find g o 1
(B0.5 to 0.7) for all conditions, indicative of diffusion in confined
media.44 Further, the dependence of g on the type of crosslinking
follows a similar trend to that found for the SPT anomalous
scaling exponent. Namely, the introduction of crosslinkers
causes a significant decrease in the stretching exponent and
non-homologous crosslinking leads to the smallest stretching
exponent. While the smaller anomalous scaling exponent found
in SPT analysis (Fig. 2) indicates more subdiffusion, a smaller
stretching exponent represents a wider distribution of decay
times that is indicative of more dynamic heterogeneity in the
environment.41,42,44 This trend supports our displacement
distribution data (Fig. 3), which indicates substantial transport
heterogeneity in all networks that is most apparent for A–M
networks and least apparent for the non-crosslinked networks.
We note that this apparent heterogeneity is not a result of spatial
heterogeneities in the composites, as we have previously shown
these networks to be well mixed and largely homogenous, with no
sign of bundling, aggregation or other wide-spread spatial
heterogeneities.60 Rather the heterogeneity lies in the individual
particle trajectories which exhibit diverse combinations of caging,
hopping, and randomly sampling the environment; a behavior
that has been shown to occur more readily in more rigid networks
(ESI,† Fig. S2).31,61

Finally, to further quantify the extent to which the transport
we report is anomalous, we evaluate three dimensionless
parameters: the non-Gaussianity parameter bNG determined

via SPT data, the ergodicity-breaking parameter EB generated
via SPT, and the non-ergodicity parameter C computed via
DDM analysis (Fig. 5). For a particle undergoing Brownian
motion, an ergodic process obeying Gaussian statistics, bNG =
EB = C = 0 for long times. As shown in Fig. 5A, bNG(Dt) for all
conditions decreases from an initial absolute maximum
BO(10) to a nearly time-independent plateau of BO(1).
However, the long-time plateau is significantly higher for the
crosslinked networks relative the unlinked network, further
evidenced by the time-average of bNG(Dt) shown in the inset.
We also compare the ensemble-averaged MSDs with the time-
averaged MSDs through the ergodicity-breaking parameter EB,
computed via SPT and defined in the Methods. We observe that
EB is non-zero for all conditions, indicating that the ensemble-
averaged and time-averaged MSDs are not equivalent (Fig. 5B).
Further, the non-homologously crosslinked network (A–M) is
the least ergodic by a factor of B2. The non-ergodicity parameter,

Fig. 4 DDM analysis reveals heterogeneous, non-ergodic transport
amplified in crosslinked networks. (A) Intermediate scattering functions
(ISF) are fit to a stretched exponential with a non-ergodicity component, as
described in Methods. The fits to the ISFs for each condition are plotted in
bright green. The height of the long-time plateau reflects the non-
ergodicity of the transport. (B) The stretching exponent (g) from the
intermediate scattering functions for each condition is plotted. A stretching
exponent less than 1 indicates the presence of heterogeneous crowded
media. Error bars are the standard error calculated from the different videos
taken for each sample.
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C, found independently through DDM analysis, shows strikingly
similar trends to EB (Fig. 5B). C is a measure of the long-time
plateau of the intermediate scattering functions and, as such, can
vary between 0 and 1, with 0 indicating ergodic motion. Again,
we find that the non-homologously crosslinked network (A–M)
deviates the most from an ergodic process while the unlinked
network deviates the least. The dependence of this deviation on
the crosslinking motif follows a similar trend as our previously
described parameters (subdiffusive scaling exponent, characteris-
tic decay length and scaling, and DDM stretching exponent),
wherein the unlinked network is consistently the least anomalous
while the A–M network is the most anomalous.

Discussion

We use two independent techniques, SPT and DDM, to characterize
the transport of microscopic particles in in vitro cytoskeleton
networks with varying types of crosslinking. With these
complementary techniques, we evaluate the degree to which
the networks lead to deviations from normal Brownian

diffusion with six different transport metrics to quantitatively
characterize the network-dependent anomalous transport
(Fig. 6). Collectively, our results indicate that particles undergo
anomalous, non-Gaussian subdiffusion that is non-ergodic in
all networks. However, the degree to which these transport
phenomena manifest is highly dependent on the type of cross-
linking in the actin–microtubule composites.

The unlinked network is consistently the least anomalous by
all metrics (Fig. 6). While it may be intuitively expected that the
least restricted network would have the least deviation from
normal transport, this result is not trivial considering all
networks have the same mesh size (x = 0.81 mm) due to the
fixed molar concentrations of actin and microtubules.47,60

Further, the transport in the unlinked network is still complex,
i.e., it is subdiffusive (Fig. 2) and non-Gaussian (Fig. 3–5), and
exhibits ergodicity-breaking (Fig. 5). To understand the distinct
transport characteristics in crosslinked versus unlinked networks
we turn to our previous analysis of the filament dynamics in
these networks47 which revealed that, upon crosslinking, the
mobility of microtubules is significantly and equally suppressed
by all crosslinking motifs, and the distribution of measured
mobilities is narrowed. We note that while, in this case, the
suppression of microtubule mobility is coupled with a narrowing
of the corresponding mobility distributions, we also find
instances in which reduced mobility of actin filaments is seen
along with a broadening of mobility distributions, as we describe
further below. This decrease in microtubule mobility likely acts
to restrict or ‘cage’ the motion of the microsphere tracers to the
local network mesh. This phenomenon is evidenced by the long-
time limits in the MSD (Fig. 2A) and characteristic decay length l
curves (Fig. 3B). In nearly all crosslinked networks the particle

Fig. 5 Metrics from both SPT and DDM show that crosslinking increases
the non-Gaussianity and non-ergodicity of particle transport. (A) Non-
Gaussianity parameter, bNG(Dt), as function of time for each crosslinking
type. Inset: Time-average of bNG. (B) Black, left axis: time-average of the
ergodicity-breaking term EB as measured from SPT. Error bars represent
the standard error calculated from the separate videos taken for each
sample. Gray, right axis: non-ergodicity parameter C averaged over
wave vectors 1.37 to 3.48 mm�1. Error bars represent the standard error
calculated for the different wave vectors (see ESI,† Fig. S3).

Fig. 6 Multiple transport metrics highlight the degree to which cross-
linking motif drives deviations from normal Brownian motion in composite
cytoskeleton networks. Using the same color scheme as in previous
figures, we show how the type of crosslinking, or lack thereof (black),
influences subdiffusion (a), spatiotemporal heterogeneity (g, O, bNG), and
ergodicity (EB, C) across complementary, independent measurement
techniques (SPT, DDM). A greater distance from the center (in the direction
of the arrows) represents a greater deviation from normal Brownian
diffusion. Each metric is scaled separately.
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MSDs do not exceed the square of the mesh size x2 and the decay
lengths do not exceed the mesh size, indicating that trapping in
the network mesh dominates transport in crosslinked networks,
further evidenced by the decrease in proxies for ergodicity, EB
and C (Fig. 5B and 6). Conversely, while transport in the
unlinked network is indeed subdiffusive and non-Gaussian,
MSDs exceed x2 and characteristic decay lengths, l, are greater
than x (Fig. 2A and 3B). This result suggests that the enhanced
microtubule mobility in unlinked networks allows for faster
network rearrangement to reduce caging, and instead couples
microsphere transport to slow rearrangements of the local
network.62 This interpretation is bolstered by weaker
ergodicity-breaking in the unlinked network compared to cross-
linked networks (Fig. 5), as motion in a highly crowded, slowly
evolving, biological environment without caging is an ergodic
process.63

While we attribute the difference between crosslinked and
unlinked networks to the suppression of microtubule bending
fluctuations, this effect cannot explain the differences among
networks with varying crosslinking motifs. As shown in Fig. 2–6,
anomalous transport features are strongest for the non-
homologous actin–microtubule crosslinked networks (A–M),
followed by microtubule–microtubule (M–M), actin–actin
(A–A) and A–A/M–M crosslinked networks. To understand this
trend we look to our previous image analysis studies described
above in which we found that, while microtubule mobility
was equally reduced by all crosslinking types, the magnitude
and distribution of actin mobilities were dependent on the
crosslinking type and displayed a similar trend to our transport
metrics.47 In particular, actin filaments displayed the
slowest and broadest distribution of thermal fluctuations in
A–M networks, followed by M–M and A–A networks, and the
fastest and narrowest fluctuation distribution in A–A/M–M
networks.47 The reduced mobility of actin in A–M networks
likely arises from coupling actin to rigid microtubules. In all
other cases, actin filaments, which are the more flexible com-
ponents of the composite, only interact with microtubules
sterically. Thus, the ability of the microtubules to slow actin
fluctuations is weaker than in the case when actin filaments are
chemically linked to the microtubules in a nearly permanent
fashion. Conversely, relative to the other crosslinked networks,
transport within the A–A/M–M network is more weakly sub-
diffusive at long times and the temporal evolution of the
decay length is steeper, suggesting that faster actin filament
fluctuations lead to weaker deviations from normal Brownian
motion.

We expect our results to be generally valid for particle
transport in biopolymer composites when the particle size is
larger than the mesh size.35,41,61,64–66 Particles much smaller
than the mesh size will primarily sample the solute rather than
the network, so we would expect transport to be much faster
and less anomalous.31 Beads much larger than the mesh, while
sampling the network and nominally being able to reproduce
the results we present, would move too slowly to accurately
measure MSDs and particle displacements in a reasonable
window of time.67,68

Conclusion

The cytoskeleton is a widely studied, complex network com-
prised, in part, of semiflexible actin filaments and rigid micro-
tubules, along with myriad crosslinking proteins that crosslink
actin to actin (e.g. alpha-actinin, filamin, spectrin, etc.),69–73

microtubules to microtubules (e.g. MAP65, XCTK2, Tau, etc.)74–76

and actin to microtubules (e.g. MAP2, APC, proflin, plectin,
etc.).77–80 The diversity of crosslinking patterns possible with
these crosslinkers not only directly alters the structure and
dynamics of the cytoskeleton network, but, in turn, modulates
the diffusion of biomacromolecules and particles in the cell.
However, due to the complexity of the cytoskeleton, isolating the
impact of different crosslinking motifs on diffusion through the
cytoskeleton has proven difficult in vivo.

Here, we couple single-particle tracking with differential
dynamic microscopy to elucidate the transport of microspheres
in composite actin–microtubule networks in which we fix the
concentrations of actin, microtubules and crosslinkers and
only vary the type of crosslinking. Using both SPT and DDM
allows us to buttress our results between the two complementary
techniques, as well as capture transport properties over a
spatiotemporal scale from single particles to the ensemble.
Using these techniques, we have analyzed a robust suite of
anomalous transport metrics to characterize particle dynamics
in actin–microtubule networks with actin–actin, microtubule–
microtubule and actin–microtubule crosslinking. We find that
transport in all networks, even the network without crosslinkers,
is subdiffusive, non-Gaussian and non-ergodic. By introducing
crosslinking, the transport becomes significantly more
anomalous, per our metrics, which we suggest arises from the
significant decrease in microtubule mobility, which, in turn, acts
to increase the propensity for particle caging. The type of cross-
linking also plays an important role in particle transport with
actin–microtubule crosslinking resulting in the most extreme
anomalous characteristics while networks in which both actin
and microtubules are crosslinked to themselves but not each
other exhibiting the least anomalous transport. Our previous
results suggest that the dependence in transport characteristics
on the crosslinking motif is a second order effect of varying actin
mobility in the different networks. Namely, as the actin mobility
decreases and exhibits greater variance, particle transport
becomes more anomalous and increasingly controlled by the
trapping of the particles within the network, as evidenced by the
non-ergodicity and non-Gaussianity metrics.

Our results provide insight into particle transport in the
cytoskeleton – important for processes such as viral infection,
gene therapy, and drug delivery. We note that our bead size is
indeed larger than the size of many vesicles, liposomes,
cargo and macromolecules in the cell. However, our chosen
composite mesh size is also larger than that found in the
cytoskeleton.81–83 Because it is well established that transport
properties are highly dependent on the size of the probe relative
to the mesh size of the network,31,35,62,66,67,84,85 our results
likely still apply to cytoskeleton transport in cases where the
particle is larger than the cytoskeleton mesh size. We further
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note that our in vitro composite system is far less complex that
the cytoskeleton in cells. However, much of the power of in vitro
reconstitution studies lies in the ability to simplify very
complex biological systems. We strive to create networks that
simulate some of the hallmarks of the cytoskeleton – i.e., actin–
microtubule interactions and various types of crosslinking –
without adding too many complexities such as motor proteins,
dynamic crosslinkers, and intermediate filaments. In this way,
we can better isolate and evaluate the effect of changing key
interactions such as crosslinking. In future work, we will
continue to add in complexity into our in vitro systems, layer
by layer, to better mimic the in vivo cytoskeleton and be able to
best parse the contributions from each added component.

More generally, our results have direct implications towards
understanding micro-particle transport in crowded environments,
polymeric materials and synthetic hydrogels. Finally, our
measurement approaches, comprehensive suite of metrics, and
well-characterized and controlled actin–microtubule composites
serve as much-needed platforms for screening the transport
properties of a wide array of tracer particles and network
architectures.

Methods
Sample preparation

Rabbit skeletal actin monomers and porcine brain tubulin
dimers are purchased from Cytoskeleton (AKL99, T240) and
suspended in G-buffer [2.0 mM Tris (pH 8), 0.2 mM ATP,
0.5 mM DTT, 0.1 mM CaCl2] and PEM-100 [100 mM
piperazine-N,N0-bis(ethanesulfonic acid) (pH 6.8), 2 mM MgCl2,
2 mM EGTA], respectively. Resuspended actin and tubulin
solutions are flash-frozen and stored at�80 1C at concentrations
of 2 and 5 mg mL�1, respectively. To form crosslinked networks,
we mix actin monomers and tubulin dimers at a 1 : 1 molar ratio
in an aqueous buffer composed of PEM-100, 2 mM ATP, 1 mM
GTP, and 5 mM Taxol, to a final protein concentration of
c = 5.8 mM, as described previously.14,47,48,60 To crosslink filaments,
biotin–NeutrAvidin complexes with a 2 : 2 : 1 ratio of biotinylated
protein (actin and/or tubulin) to free biotin to NeutrAvidin are
preassembled and added to the solution at a crosslinker to
protein molar ratio of Rcp = 0.02. We control the type of linking
by varying the type(s) of biotinylated proteins (actin, tubulin, or
both) we include in the crosslinker complexes.47,48 We are
confident in the efficacy and selectivity of our crosslinking
protocols based on very careful experimental design and
protocols that we developed over several years. These protocols,
and the demonstrated measurable effects of the varying cross-
linking motifs, have been extensively vetted via peer-reviewed
publications by our groups and others.14,46,47,86–90 The measurable
effects have been shown in these works through confocal
microscopy, optical tweezers and magnetic tweezers micro-
rheology, single-particle tracking, and differential dynamic
microscopy. We chose the protein concentrations and molar
ratios to best compare our results with previous studies.6,14,46,47

We chose the crosslinker densities to be large enough to induce

measurable differences from unlinked networks but low
enough to not induce bundling.6 Further, at these protein
and crosslinker concentrations, the networks are well-
entangled and highly viscoelastic but still exhibit enough
mobility to allow for measurable transport and rheological
phenomena. Further, this regime is the most complex in terms
of having aspects of rigidity and long-lived interactions as well
as ample filament fluctuations, so requires the most intense
investigation.

For SPT and DDM measurements, we add a trace amount of
1 mm diameter carboxylated fluorescent YG microspheres
(Polysciences) which we coat with BSA to prevent nonspecific
binding.91,92 Based on our previous works and those of others
we are confident that this bead passivation is effective (ref. 91
and 92). Further, if the beads were interacting with the
filaments, we would not expect to measure so many hopping
events (evidenced by the large-displacement tails in the dis-
placement distributions and the trajectories in ESI,† Fig. S2) as
the beads would be stuck in the mesh. We choose 1 mm
particles such that they are larger than the mesh size of our
networks, but still small enough to accurately measure transport
properties.31,41,67,85 We verified the bead size, which was
supplied by the manufacturer, by measuring the diffusion
coefficient of the beads in water. We pipette final solutions
into a sample chamber consisting of a glass slide and coverslip
separated by B100 mm with double-sided tape. We add 0.05%
Tween to the solutions prior to loading into the sample
chamber to inhibit non-specific adsorption of proteins to the
chamber surfaces. We seal chambers with epoxy and incubate
at 37 1C for 60 min to polymerize cytoskeletal proteins and form
crosslinked networks.

Imaging. For both single-particle tracking and DDM experi-
ments, we image the microspheres using an Olympus IX73
inverted fluorescence microscope with a 20 � 0.4 NA objective
and a Hamamatsu ORCA-Flash 2.8 CMOS camera (320 nm per
pixel). For SPT, we collect 20 1920 � 1440 pixel videos of 2000
frames at 10 fps for each condition. For each of the videos, we
observe 440 trackable particles, producing a total of 4800
particles tracked. For DDM, we collect 12 512 � 512 pixel videos
of 5000 frames at 10 fps across two samples. Videos are
analyzed by examining regions of interest (ROI) of 256 � 256
pixels. For each sample condition, the experiment is carried out
on two independently prepared samples. The sample-to-sample
variation we observe and measure is indistinguishable from
video-to-video variation within a single sample. Error bars
presented throughout are determined by analyzing 3 random
subsets of videos from each sample and calculating the
standard error in values from all 6 subsets (3 from each
sample). We see no statistically significant differences in the
magnitudes or distributions of these subset values when
comparing the two different samples.

Single-particle tracking. We use custom-written particle-
tracking scripts (Python) to track the particle trajectories and
measure the frame-to-frame x- and y-displacements (Dx, Dy) of
the beads. From the displacements, we compute mean-squared
displacements hDx2i and hDy2i. The average of hDx2i and hDy2i
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(MSD) as a function of lag time Dt is fit to a power-law function
MSD p Dta where a is the subdiffusive scaling exponent. For a
system exhibiting normal Brownian diffusion, a = 1, while a o 1
indicates anomalous subdiffusion.

We also evaluate probability distributions of the measured
displacements (Dx, Dy) for various lag times (Dt) to generate van
Hove distributions (Fig. 3). These distributions are fit to a
combination of a Gaussian and exponential function

GðDx;DtÞ ¼ Ae�0:5
Dx
w

� �2
þ Be

� jDxj
l

� �
, where A is the amplitude

of the Gaussian, w is the Gaussian width, B is the amplitude of
the exponential, and l is the decay length. To further charac-
terize the transport, we compute the non-Gaussianity

parameter bNG ¼
1

3

d4ðDtÞ
D E
d2ðDtÞ
D E2 � 1 and the ergodicity-breaking

parameter EB ¼
ðd2ðDtÞÞ2
D E

� d2ðDtÞ
D E2

d2ðDtÞ
D E2 where d2(Dt) is the

time-averaged MSD for the entire ensemble of trajectories35,93

(Fig. 5). For normal diffusion, both bNG and EB trend towards
zero, whereas anomalous transport manifests as bNG 4 0 and/
or EB 4 0.

Microrheology. We determine the viscoelastic properties of
the composites from our SPT data using previously described
particle-tracking microrheology methods56–58 as done in our
prior work.15 As described in detail in ref. 56–58, we generate
the elastic modulus, G0(o), and viscous modulus, G00(o), from
the MSDs via the generalized Stokes–Einstein relation

G�ðoÞ ¼ G0ðoÞ þ iG00ðoÞ ¼ kBT

io Dr2ðoÞh ipa

where kB is the Boltzmann constant, T is the absolute temperature,
hDr2(o)i is the Fourier transform of hDr2(t)i, the MSD, and a is the
bead radius.

Differential dynamic microscopy. Following our previously
described methods,94,95 we obtain the image structure function
D(q,Dt), where q is the magnitude of the wave vector and Dt is
the lag time. The image structure function, or DDM matrix, can
then be expressed as D(q,t) = A(q)[1 � f (q,t)] + B(q), where A(q)
depends on the optical properties of the sample and
microscope and B(q) is a function of the camera noise. The
intermediate scattering function f (q,t) is then described as

f ðq;DtÞ ¼ ð1� CðqÞÞ exp � Dt
tðqÞ

� �gðqÞ
" #

þ CðqÞ;

where C(q) is the non-ergodicity parameter, t(q) is the decay
time, and g(q) is the stretching exponent. Using methods
similar to those described by Cho et al.,42 we obtain both A(q)
and B(q) prior to curve fitting. We find that D(q,t) is independent
of both q and t in the highest q domains (q 4 7.37 mm�1) as A(q)
approaches zero. This is expected, as the value of B(q) is
independent of q if camera noise is uncorrelated in space and
time.96 Thus, we take the minimum of the DDM matrix in this q
regime and equate this value to B(q). To calculate A(q), we rely on

the fact that, in linear space invariant imaging, the ensemble-
averaged squared modulus of the Fourier-transformed images

can be expressed as jîðqÞj2
� 	

E
ffi AðqÞ

2
þ BðqÞ

2
, if the contributions

from imperfections in the optical path are negligible to those in
the sample.43 Therefore, we calculate h|î(q)|2iE and, with B(q)
already obtained, calculate A(q). In our previous work, we fit the
image structure functions to extract the decay times and stretching
exponents. Here, having obtained A(q) and B(q), we fit the
intermediate scattering functions (ISFs) directly to extract
C(q), t(q), and g(q) using a combination of least squares and
Levenberg–Marquardt curve fitting in Python. Only ISFs with
q values in the range of 1.37 to 3.48 mm�1 are well-fit to
the stretched exponential equation above, so we restrict our
analyses to this range.
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35 F. Höfling and T. Franosch, Rep. Prog. Phys., 2013,
76, 046602.

36 T. J. Lampo, S. Stylianidou, M. P. Backlund, P. A. Wiggins
and A. J. Spakowitz, Biophys. J., 2017, 112, 532–542.

37 Y. Lanoiselée and D. S. Grebenkov, J. Phys. A: Math. Theor.,
2018, 51, 145602.

38 P. Malgaretti, I. Pagonabarraga and J. Rubi, Entropy, 2016,
18, 394.

39 R. Metzler, Biophys. J., 2017, 112, 413–415.
40 B. Wang, J. Kuo, S. C. Bae and S. Granick, Nat. Mater., 2012,

11, 481–485.
41 F. Burla, T. Sentjabrskaja, G. Pletikapic, J. van Beugen and

G. H. Koenderink, Soft Matter, 2020, 16, 1366–1376.
42 J. H. Cho, R. Cerbino and I. Bischofberger, Phys. Rev. Lett.,

2020, 124, 088005.
43 F. Giavazzi and R. Cerbino, J. Opt., 2014, 16, 083001.
44 J. D. C. Jacob, K. He, S. T. Retterer, R. Krishnamoorti and

J. C. Conrad, Soft Matter, 2015, 11, 7515–7524.
45 J. H. Cho, PhD thesis, Massachusetts Institute of Technol-

ogy, 2018.
46 D. M. Wulstein, K. E. Regan, J. Garamella, R. J. McGorty and

R. M. Robertson-Anderson, Sci. Adv., 2019, 5, eaay5912.
47 S. N. Ricketts, M. L. Francis, L. Farhadi, M. J. Rust, M. Das,

J. L. Ross and R. M. Robertson-Anderson, Sci. Rep., 2019,
9, 12831.

48 S. N. Ricketts, B. Gurmessa and R. M. Robertson-Anderson,
in Parasitology and Microbiology Research, ed. G. Antonio
Bastidas Pacheco and A. Ali Kamboh, IntechOpen, 2020.

49 C. Xue, X. Zheng, K. Chen, Y. Tian and G. Hu, J. Phys. Chem.
Lett., 2016, 7, 514–519.
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77 A. Elie, E. Prezel, C. Guérin, E. Denarier, S. Ramirez-Rios,
L. Serre, A. Andrieux, A. Fourest-Lieuvin, L. Blanchoin and
I. Arnal, Sci. Rep., 2015, 5, 9964.

78 M. A. Juanes, D. Isnardon, A. Badache, S. Brasselet,
M. Mavrakis and B. L. Goode, J. Cell Biol., 2019, 218,
3415–3435.

79 M. L. Pimm, J. Hotaling and J. L. Henty-Ridilla, Int. Rev. Cell
Mol. Biol., 2020, 355, 155–204.
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